Recent experiments on walking droplets in an annular cavity showed the existence of complex dynamics including chaotically changing velocity. This article presents models, influenced by the kicked rotator/standard map, for both single and multiple droplets. The models are shown to achieve both qualitative and quantitative agreement with the experiments, and make predictions about heretofore unobserved behavior. Using dynamical systems techniques and bifurcation theory, the single droplet model is analyzed to prove dynamics suggested by the numerical simulations.

1.
D.
Shirokoff
, “
Bouncing droplets on a billiard table
,”
Chaos
23
,
013115
(
2013
).
2.
G.
Pucci
,
P.
Sáenz
,
L.
Faria
, and
J.
Bush
, “
Non-specular reflection of walking droplets
,”
J. Fluid Mech.
804
,
R3
(
2016
).
3.
B.
Filoux
,
M.
Hubert
, and
N.
Vandewalle
, “
Strings of droplets propelled by coherent waves
,”
Phys. Rev. E
92
,
041004(R)
(
2015
).
4.
G.
Pucci
and
D.
Harris
, “Chaotic walking on an annulus experiments,” private communication (2018).
5.
M.
Couchman
, “Droplets walking with constant velocity on an annulus,” private communication (2018).
6.
J.
Bush
, “
Pilot-wave hydrodynamics
,”
Ann. Rev. Fluid Mech.
49
,
269
292
(
2015
).
7.
T.
Gilet
, “
Dynamics and statistics of wave-particle interaction in a confined geometry
,”
Phys. Rev. E
90
,
052917
(
2014
).
8.
T.
Gilet
, “
Quantumlike statistics of deterministic wave-particle interactions in a circular cavity
,”
Phys. Rev. E
93
,
042202
(
2016
).
9.
B.
Filoux
,
M.
Hubert
,
P.
Schlagheck
, and
N.
Vandewalle
, “
Walking droplets in linear channels
,”
Phys. Rev. F
2
,
013601
(
2017
).
10.
A.
Rahman
and
D.
Blackmore
, “
Neimark-sacker bifurcations and evidence of chaos in a discrete dynamical model of walkers
,”
Chaos Solitons Fractals
91
,
339
349
(
2016
).
11.
A.
Rahman
and
D.
Blackmore
, “
Exotic bifurcations inspired by walking droplet dynamics
,” arXiv:1708.07593 (unpublished).
12.
A.
Rahman
,
Y.
Joshi
, and
D.
Blackmore
, “
Sigma map dynamics and bifurcations
,”
Regul. Chaotic Dyn.
22
,
740
749
(
2017
).
13.
B. V.
Chirikov
, “Research concerning the theory of nonlinear resonance and stochasticity,” Preprint No. 267 (Institute of Nuclear Physics, Novosibirsk, 1969), pp. 71–40 [CERN Trans. (1971) (in English)].
14.
B. V.
Chirikov
, “
A universal instability of many-dimensional oscillator systems
,”
Phys. Rep.
52
,
263
379
(
1979
).
15.
Y.
Kuznetsov
,
Elements of Applied Bifurcation Theory
, 3rd ed. (
Springer-Verlag
,
New York, NY
,
1995
), Vol. 112.
16.
T.
Li
and
J.
Yorke
, “
Period three implies chaos
,”
Am. Math. Mon.
82
,
985
992
(
1975
).
17.
A.
Rahman
,
I.
Jordan
, and
D.
Blackmore
, “
Qualitative models and experimental investigation of chaotic nor gates and set/reset flip-flops
,”
Proc. R. Soc. A
474
,
1
19
(
2018
).
18.
B.
Filoux
,
M.
Hubert
, and
N.
Vandewalle
, “
Strings of droplets propelled by coherent waves
,” e-print arXiv:1504.00484 (
2015
).
You do not currently have access to this content.