A hydrodynamic analog to the optical Talbot effect may be realized on the surface of a vertically shaken fluid bath when a periodic array of pillars protrudes from the fluid surface. When the pillar spacing is twice or one and a half times the Faraday wavelength, we observe repeated images of the pillars projected in front of the array. Sloshing inter-pillar ridges act as sources of Faraday waves, giving rise to self-images. Here, we explore the emergence of Faraday-Talbot patterns when the sloshing ridges between pillars have alternating phases. We present a simple model of linear wave superposition and use it to calculate the expected self-image locations, comparing them to experimental observations. We explore how alternating phase sources affect the Faraday-Talbot patterns for linear and circular arrays of pillars, where curvature allows for magnification and demagnification of the self-imaging pattern. The use of an underlying wavefield is a subject of current interest in hydrodynamic quantum analog experiments, as it may provide a means to trap walking droplets.

1.
K.
Patorski
, “
The self-imaging phenomenon and its applications
,” in
Progress in Optics
(
North-Holland
,
Amsterdam
,
1989
), Vol. 27, pp.
1
108
.
2.
H. F.
Talbot
, “
Facts relating to optical science. No. IV
,”
Philos. Mag.
9
(
56
),
401
(
1836
).
3.
Lord Rayleigh
, “
On copying diffraction-gratings, and on some phenomena connected therewith
,”
Philos. Mag.
11
,
196
(
1881
).
4.
J.
Wen
,
Y.
Zhang
, and
M.
Xiao
, “
The Talbot effect: Recent advances in classical optics, nonlinear optics, and quantum optics
,”
Adv. Opt. Photon.
5
,
83
(
2013
).
5.
M. V.
Berry
and
S.
Klein
, “
Integer, fractional and fractal Talbot effects
,”
J. Mod. Opt.
43
,
2139
(
1996
).
6.
R.
Newell
,
J.
Sebby
, and
T. G.
Walker
, “
Dense atom clouds in a holographic atom trap
,”
Opt. Lett.
28
,
1266
(
2003
).
7.
Y. Y.
Sun
,
X.-C.
Yuan
,
L. S.
Ong
,
J.
Bu
,
S. W.
Zhu
, and
R.
Liu
, “
Large-scale optical traps on a chip for optical sorting
,”
Appl. Phys. Lett.
90
,
031107
(
2007
).
8.
M. S.
Chapman
,
C. R.
Ekstrom
,
T. D.
Hammond
,
J.
Schmiedmayer
,
B. E.
Tannian
,
S.
Wehinger
, and
D. E.
Pritchard
, “
Near-field imaging of atom diffraction gratings: The atomic Talbot effect
,”
Phys. Rev. A
51
,
R14
(
1995
).
9.
L.
Deng
,
E. W.
Hagley
,
J.
Denschlag
,
J. E.
Simsarian
,
M.
Edwards
,
C. W.
Clark
,
K.
Helmerson
,
S. L.
Rolston
, and
W. D.
Phillips
, “
Temporal, matter-wave-dispersion Talbot effect
,”
Phys. Rev. Lett.
83
,
5407
(
1999
).
10.
W.
Zhang
,
C.
Zhao
,
J.
Wang
, and
J.
Zhang
, “
An experimental study of the plasmonic Talbot effect
,”
Opt. Express
17
,
19757
(
2009
).
11.
T.
Weitkamp
,
A.
Diaz
,
C.
David
,
F.
Pfeiffer
,
M.
Stampanoni
,
P.
Cloetens
, and
E.
Ziegler
, “
X-ray phase imaging with a grating interferometer
,”
Opt. Express
13
,
6296
(
2005
).
12.
N.
Sungar
,
L. D.
Tambasco
,
G.
Pucci
,
P. J.
Saenz
, and
J. W. M.
Bush
, “
Hydrodynamic analog of particle trapping with the Talbot effect
,”
Phys. Rev. Fluids
2
,
103602
(
2017
).
13.
T. B.
Benjamin
and
F.
Ursell
, “
The stability of the plane free surface of a liquid in vertical periodic motion
,”
Proc. R. Soc. Lond.
225
(
1163
),
505
515
(
1954
).
14.
D. M.
Harris
and
J. W. M.
Bush
, “
Generating uniaxial vibration with an electrodynamic shaker and external air bearing
,”
J. Sound Vib.
334
,
255
(
2015
).
15.
Francisco Jose
Torcal-Milla
,
Luis Miguel
Sanchez-Brea
,
Francisco Javier
Salgado-Remacha
, and
Eusebio
Bernabeu
, “
Self imaging with curved grating
,”
Opt. Commun.
283
,
3869
3873
(
2010
).
16.
W.
Zhang
,
J.
Wang
,
Y.
Cui
, and
S.
Teng
, “
Talbot effect of curved grating
,”
Opt. Commun.
341
,
245
251
(
2015
).
17.
A. W.
Lohmann
,
J.
Schwider
,
N.
Streibl
, and
J.
Thomas
, “
Array illuminator based on phase contrast
,”
Appl. Optics
27
(
14
),
2915
2921
(
1988
).
18.
A. W.
Lohmann
and
J.
Thomas
, “
Making an array illuminator based on the Talbot effect
,”
Appl. Optics
29
(
29
),
4337
4340
(
1990
).
19.
P.
Sáenz
,
T.
Cristea-Platon
, and
J. W. M.
Bush
, “
Statistical projection effects in a hydrodynamic pilot-wave system
,”
Nat. Phys.
14
,
315
319
(
2017
).
You do not currently have access to this content.