Fractal structures pervade nature and are receiving increasing engineering attention towards the realization of broadband resonators and antennas. We show that fractal resonators can support the emergence of high-dimensional chaotic dynamics even in the context of an elementary, single-transistor oscillator circuit. Sierpiński gaskets of variable depth are constructed using discrete capacitors and inductors, whose values are scaled according to a simple sequence. It is found that in regular fractals of this kind, each iteration effectively adds a conjugate pole/zero pair, yielding gradually more complex and broader frequency responses, which can also be implemented as much smaller Foster equivalent networks. The resonators are instanced in the circuit as one-port devices, replacing the inductors found in the initial version of the oscillator. By means of a highly simplified numerical model, it is shown that increasing the fractal depth elevates the dimension of the chaotic dynamics, leading to high-order hyperchaos. This result is overall confirmed by SPICE simulations and experiments, which however also reveal that the non-ideal behavior of physical components hinders obtaining high-dimensional dynamics. The issue could be practically mitigated by building the Foster equivalent networks rather than the verbatim fractals. Furthermore, it is shown that considerably more complex resonances, and consequently richer dynamics, can be obtained by rendering the fractal resonators irregular through reshuffling the inductors, or even by inserting a limited number of focal imperfections. The present results draw attention to the potential usefulness of fractal resonators for generating high-dimensional chaotic dynamics, and underline the importance of irregularities and component non-idealities.

1.
B.
Mandelbrot
,
The Fractal Geometry of Nature
(
W.H. Freeman & Co.
,
New York
,
1982
).
2.
B.
Mandelbrot
,
Fractals and Chaos: The Mandelbrot Set and Beyond
(
Springer-Verlag
,
New York
,
2004
).
3.
J.
Kwapień
and
S.
Drożdż
, “
Physical approach to complex systems
,”
Phys. Rep.
515
(
3-4
),
115
226
(
2012
).
4.
F.
Caserta
,
H.
Stanley
,
W.
Eldred
,
G.
Daccord
,
R.
Hausman
, and
J.
Nittmann
, “
Physical mechanisms underlying neurite outgrowth: A quantitative analysis of neuronal shape
,”
Phys. Rev. Lett.
64
(
1
),
95
98
(
1990
).
5.
S. G.
Alves
,
M. L.
Martins
,
P. A.
Fernandes
, and
J.
Pittella
, “
Fractal patterns for dendrites and axon terminals
,”
Physica A
232
(
1-2
),
51
60
(
1996
).
6.
G.
Werner
, “
Fractals in the nervous system: Conceptual implications for theoretical neuroscience
,”
Front. Physiol.
1
,
15
(
2010
).
7.
A.
Di Ieva
,
The Fractal Geometry of the Brain
(
Springer-Verlag
,
New York
,
2016
).
8.
S.
Havlin
,
S.
Buldyrev
,
A.
Goldberger
,
R.
Mantegna
,
S.
Ossadnik
,
C.
Peng
,
M.
Simons
, and
H.
Stanley
, “
Fractals in biology and medicine
,”
Chaos Solitons Fractals
6
,
171
201
(
1995
).
9.
A. L.
Goldberger
,
L. A. N.
Amaral
,
J. M.
Hausdorff
,
P. C.
Ivanov
,
C.-K.
Peng
, and
H. E.
Stanley
, “
Fractal dynamics in physiology: Alterations with disease and aging
,”
Proc. Natl. Acad. Sci. USA
99
(
S1
),
2466
2472
(
2002
).
10.
P.
Bak
and
M.
Creutz
, “Fractals and self-organized criticality,” in Fractals in Science (Springer, Berlin, 1994), pp. 27–48.
11.
N. P. V.
Paar
and
M.
Rosandic
, “
Link between truncated fractals and coupled oscillators in biological systems
,”
J. Theor. Biol.
212
(
1
),
47
56
(
2001
).
12.
W.
Singer
and
A.
Lazar
, “
Does the cerebral cortex exploit high-dimensional, non-linear dynamics for information processing?
,”
Front. Comput. Neurosci.
10
,
99
(
2016
).
13.
Y.-J.
Bao
,
B.
Zhang
,
Z.
Wu
,
J.-W.
Si
,
M.
Wang
,
R.-W.
Peng
,
X.
Lu
,
J.
Shao
,
Z.-f.
Li
,
X.-P.
Hao
et al., “
Surface-plasmon-enhanced transmission through metallic film perforated with fractal-featured aperture array
,”
Appl. Phys. Lett.
90
(
25
),
251914
(
2007
).
14.
F.
Carlier
and
V.
Akulin
, “
Quantum interference in nanofractals and its optical manifestation
,”
Phys. Rev. B
69
(
11
),
115433
(
2004
).
15.
M.
Fairbanks
,
D.
McCarthy
,
S.
Scott
,
S.
Brown
, and
R.
Taylor
, “
Fractal electronic devices: Simulation and implementation
,”
Nanotechnology
22
(
36
),
365304
(
2011
).
16.
C. P.
Baliarda
,
C. B.
Borau
,
M. N.
Rodero
, and
J. R.
Robert
, “
An iterative model for fractal antennas: Application to the Sierpinski gasket antenna
,”
IEEE Trans. Antennas Propag.
48
(
5
),
713
719
(
2000
).
17.
N.
Cohen
, “
Fractal antenna and fractal resonator primer
,” in
Benoit Mandelbrot: A Life in Many Dimensions
(
World Scientific
,
Singapore
,
2015
), pp.
207
228
.
18.
J. A.
Fan
,
W.-H.
Yeo
,
Y.
Su
,
Y.
Hattori
,
W.
Lee
,
S.-Y.
Jung
,
Y.
Zhang
,
Z.
Liu
,
H.
Cheng
,
L.
Falgout
et al., “
Fractal design concepts for stretchable electronics
,”
Nat. Commun.
5
,
3266
(
2014
).
19.
S.
Scott
and
S.
Brown
, “
Three-dimensional growth characteristics of antimony aggregates on graphite
,”
Eur. Phys. J. D
39
(
3
),
433
438
(
2006
).
20.
J. P.
Chen
,
L. G.
Rogers
,
L.
Anderson
,
U.
Andrews
,
A.
Brzoska
,
A.
Coffey
,
H.
Davis
,
L.
Fisher
,
M.
Hansalik
,
S.
Loew
et al., “
Power dissipation in fractal AC circuits
,”
J. Phys. A
50
(
32
),
325205
(
2017
).
21.
P.
Alonso Ruiz
, “
Power dissipation in fractal Feynman-Sierpinski AC circuits
,”
J. Math. Phys.
58
(
7
),
073503
(
2017
).
22.
S.-J.
Kim
,
W.-Y.
Choi
,
K.-I.
Heo
, and
G.
Moon
, “
A frequency-shift keying modulation technique using a fractal ring-oscillator
,”
Int. J. Multimed. Ubiquit. Eng.
10
(
11
),
397
406
(
2015
).
23.
W.-Y.
Choi
,
S.-J.
Kim
,
K.-I.
Heo
, and
G.
Moon
, “
Design of CMOS GHz cellular oscillator/distributor network supply voltage and ambient temperature insensitivities
,”
Adv. Sci. Tech. Lett. Ubiquit. Sci. Eng.
8
(
6
),
52
57
(
2015
).
24.
L.
Minati
,
M.
Frasca
,
P.
Oświȩcimka
,
L.
Faes
, and
S.
Drożdż
, “
Atypical transistor-based chaotic oscillators: Design, realization, and diversity
,”
Chaos
27
(
6
),
073113
(
2017
).
25.
F.
Kuo
,
Network Analysis and Synthesis
(
John Wiley & Sons
,
Hoboken, NJ
,
2006
).
26.
J.
Millman
and
A.
Grabel
,
Microelectronics
(
McGraw-Hill
,
New York
,
1987
).
27.
J.
Dormand
and
P.
Prince
, “
A family of embedded Runge-Kutta formulae
,”
J. Comput. Appl. Math.
6
(
1
),
19
26
(
1980
).
28.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.
Strelcyn
et al., “
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems, a method for computing all of them. Part 1: Theory
,”
Meccanica
15
(
1
),
9
20
(
1980
).
29.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems, a method for computing all of them. Part 2: Numerical application
,”
Meccanica
15
(
1
),
21
30
(
1980
).
30.
C.
Skokos
, “
The Lyapunov characteristic exponents and their computation
,”
Lect. Notes Phys.
790
,
63
135
(
2010
).
31.
J. L.
Kaplan
and
J. A.
Yorke
, “
Chaotic behavior of multidimensional difference equations
,” in
Functional Differential Equations and Approximation of Fixed Points
(
Springer
,
Berlin
,
1979
), pp.
204
227
.
32.
M.
Franchi
and
L.
Ricci
, “
Statistical properties of the maximum Lyapunov exponent calculated via the divergence rate method
,”
Phys. Rev. E
90
(
6
),
062920
(
2014
).
33.
A.
Elwakil
and
M.
Kennedy
, “
Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices
,”
IEEE Trans. Circuits Syst. I
48
(
3
),
289
307
(
2001
).
34.
G.
Hu
, “
Hyperchaos of higher order and its circuit implementation
,”
Int. J. Circ. Theor. App.
39
(
1
),
79
89
(
2011
).
35.
B. K.
Shivamoggi
, “
Chaos in dissipative systems
,” in
Nonlinear Dynamics and Chaotic Phenomena: An Introduction
(
Springer
,
Dordrecht
,
2014
), pp.
189
244
.
36.
See http://ngspice.sourceforge.net for NGSPICE software and documentation.
37.
L.
Minati
, “
Experimental dynamical characterization of five autonomous chaotic oscillators with tunable series resistance
,”
Chaos
24
(
3
),
033110
(
2014
).
38.
Y.-C.
Lai
and
D.
Lerner
, “
Effective scaling regime for computing the correlation dimension from chaotic time series
,”
Physica D
115
(
1-2
),
1
18
(
1998
).
39.
H. S.
Kim
,
R.
Eykholt
, and
J. D.
Salas
, “
Nonlinear dynamics, delay times, and embedding windows
,”
Physica D
127
(
1-2
),
48
60
(
1999
).
40.
K. P.
Michalak
, “
Modifications of the Takens-Ellner algorithm for medium- and high-dimensional signals
,”
Phys. Rev. E
83
(
2
),
026206
(
2011
).
41.
K. P.
Michalak
, “
How to estimate the correlation dimension of high-dimensional signals?
,”
Chaos
24
(
3
),
033118
(
2014
).
43.
K. E.
Chlouverakis
and
J.
Sprott
, “
A comparison of correlation and Lyapunov dimensions
,”
Physica D
200
(
1-2
),
156
164
(
2005
).
44.
See http://product.tdk.com and http://search.murata.co.jp for inductor SPICE models.
45.
See http://www.lminati.it/listing/2018/b for board design materials, raw time-series, and frequency response datasets.
46.
T.
Schreiber
and
A.
Schmitz
, “
Surrogate time series
,”
Physica D
142
(
3-4
),
346
382
(
2000
).
47.
C.
Bandt
and
B.
Pompe
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
(
17
),
174102
(
2002
).
48.
M.
Riedl
,
A.
Müller
, and
N.
Wessel
, “
Practical considerations of permutation entropy
,”
Eur. Phys. J. Spec. Top.
222
(
2
),
249
262
(
2013
).
49.
C. S. N.
Brito
and
W.
Gerstner
, “
Nonlinear Hebbian learning as a unifying principle in receptive field formation
,”
PLoS Comput. Biol.
12
(
9
),
1
24
(
2016
).
50.
A.
Namajũnas
,
K.
Pyragas
, and
A.
Tamaševičius
, “
An electronic analog of the Mackey-Glass system
,”
Phys. Lett. A
201
(
1
),
42
46
(
1995
).
51.
A.
Buscarino
,
L.
Fortuna
,
M.
Frasca
, and
G.
Sciuto
, “
Design of time-delay chaotic electronic circuits
,”
IEEE Trans. Circuits Syst. I
58
(
8
),
1888
1896
(
2011
).
52.
A.
Čenys
,
A.
Tamaševičius
,
A.
Baziliauskas
,
R.
Krivickas
, and
E.
Lindberg
, “
Hyperchaos in coupled Colpitts oscillators
,”
Chaos Solitons Fractals
17
(
2-3
),
349
353
(
2003
).
53.
T.
Kapitaniak
,
L.
Chua
, and
G.-Q.
Zhong
, “
Experimental hyperchaos in coupled Chua’s circuits
,”
IEEE Trans. Circuits Syst. I
41
(
7
),
499
503
(
1994
).
54.
K.
Murali
,
A.
Tamaševičius
,
G.
Mykolaitis
,
A.
Namajũnas
, and
E.
Lindberg
, “
Hyperchaotic system with unstable oscillators
,”
Nonlinear Phenom. Complex Syst.
3
(
1
),
7
10
(
2000
).
55.
E.
Lindberg
,
K.
Murali
, and
A.
Tamaševičius
, “
Hyperchaotic circuit with damped harmonic oscillators
,”
The 2001 IEEE International Symposium on Circuits and Systems
(
ISCAS
,
2001
) Vol. 3, pp.
759
762
.
56.
B.
Cannas
and
S.
Cincotti
, “
Hyperchaotic behaviour of two bidirectionally coupled Chua’s circuits
,”
Int. J. Circ. Theor. App.
30
(
6
),
625
637
(
2002
).
57.
A.
Tamaševičius
,
A.
Namajũnas
, and
A.
Čenys
, “
Simple 4D chaotic oscillator
,”
Electron. Lett.
32
(
1
),
957
958
(
1996
).
58.
A.
Tamaševičius
,
A.
Čenys
,
G.
Mykolaitis
,
A.
Namajũnas
, and
E.
Lindberg
, “
Hyperchaotic oscillator with gyrators
,”
Electron. Lett.
33
(
7
),
542
544
(
1997
).
59.
A.
Elwakil
and
M.
Kennedy
, “
Inductorless hyperchaos generator
,”
Microelectron. J.
30
(
8
),
739
743
(
1999
).
60.
C.
Li
,
J. C.
Sprott
,
W.
Thio
, and
H.
Zhu
, “
A new piecewise linear hyperchaotic circuit
,”
IEEE Trans. Circuits Syst. II
61
(
12
),
977
981
(
2014
).
61.
F.
Bridges
,
G.
Davies
,
J.
Robertson
, and
A. M.
Stoneham
, “
The spectroscopy of crystal defects: A compendium of defect nomenclature
,
J. Phys. Condens. Matter
2
(
13
),
2875
(
1990
).
62.
F. H.
Stillinger
and
B. D.
Lubachevsky
, “
Patterns of broken symmetry in the impurity-perturbed rigid-disk crystal
,”
J. Stat. Phys.
78
(
3-4
),
1011
1026
(
1995
).
63.
H.
Raebiger
, “
Theory of defect complexes in insulators
,”
Phys. Rev. B
82
(
7
),
073104
(
2010
).

Supplementary Material

You do not currently have access to this content.