We investigate a critically-coupled chain of nonlinear oscillators, whose dynamics displays complex spatiotemporal patterns of activity, including regimes in which glider-like coherent excitations move about and interact. The units in the network are identical simple neural circuits whose dynamics is given by the Wilson-Cowan model and are arranged in space along a one-dimensional lattice with nearest neighbor interactions. The interactions follow an alternating sign rule, and hence the “synaptic matrix” M embodying them is tridiagonal antisymmetric and has purely imaginary (critical) eigenvalues. The model illustrates the interplay of two properties: circuits with a complex internal dynamics, such as multiple stable periodic solutions and period doubling bifurcations, and coupling with a “critical” synaptic matrix, i.e., having purely imaginary eigenvalues. In order to identify the dynamical underpinnings of these behaviors, we explored a discrete-time coupled-map lattice inspired by our system: the dynamics of the units is dictated by a chaotic map of the interval, and the interactions are given by allowing the critical coupling to act for a finite period τ, thus given by a unitary matrix U=exp(τ2M). It is now explicit that such critical couplings are volume-preserving in the sense of Liouville’s theorem. We show that this map is also capable of producing a variety of complex spatiotemporal patterns including gliders, like our original chain of neural circuits. Our results suggest that if the units in isolation are capable of featuring multiple dynamical states, then local critical couplings lead to a wide variety of emergent spatiotemporal phenomena.

1.
G. B.
Ermentrout
, “
The behavior of rings of coupled oscillators
,”
J. Math. Biol.
23
(
1
),
55
74
(
1985
).
2.
N.
Kopell
and
G. B.
Ermentrout
, “
Phase transitions and other phenomena in chains of coupled oscillators
,”
SIAM J. Appl. Math.
50
(
4
),
1014
1052
(
1990
).
3.
A. T.
Winfree
,
The Geometry of Biological Time
(
Springer Science & Business Media
,
2001
), Vol. 12.
4.
P.
Baldi
and
R.
Meir
, “
Computing with arrays of coupled oscillators: An application to preattentive texture discrimination
,”
Neural Comput.
2
(
4
),
458
471
(
1990
).
5.
S.
Campbell
and
D.
Wang
, “
Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators
,”
IEEE Trans. Neural Netw.
7
(
3
),
541
554
(
1996
).
6.
A. H.
Cohen
,
P. J.
Holmes
, and
R. H.
Rand
, “
The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model
,”
J. Math. Biol.
13
(
3
),
345
369
(
1982
).
7.
T. L.
Williams
, “
Phase coupling by synaptic spread in chains of coupled neuronal oscillators
,”
Science
258
(
5082
),
662
665
(
1992
).
8.
T. L.
Williams
,
K. A.
Sigvardt
,
N.
Kopell
,
G. B.
Ermentrout
, and
M. P.
Remler
, “
Forcing of coupled nonlinear oscillators: Studies of intersegmental coordination in the lamprey locomotor central pattern generator
,”
J. Neurophysiol.
64
(
3
),
862
871
(
1990
).
9.
A.
Roberts
, “
How does a nervous system produce behaviour? A case study in neurobiology
,”
Sci. Prog.
74
,
31
51
(
1990
).
10.
K.
Ahnert
and
A.
Pikovsky
, “
Traveling waves and compactons in phase oscillator lattices
,”
Chaos: Interdiscip. J. Nonlinear Sci.
18
(
3
),
037118
(
2008
).
11.
L.
Brunnet
,
H.
Chaté
, and
P.
Manneville
, “
Long-range order with local chaos in lattices of diffusively coupled ODEs
,”
Physica D
78
(
3–4
),
141
154
(
1994
).
12.
G. V.
Osipov
,
A. S.
Pikovsky
,
M. G.
Rosenblum
, and
J.
Kurths
, “
Phase synchronization effects in a lattice of nonidentical Rössler oscillators
,”
Phys. Rev. E
55
(
3
),
2353
(
1997
).
13.
K.
Kaneko
, “
Overview of coupled map lattices
,”
Chaos: Interdiscip. J. Nonlinear Sci.
2
(
3
),
279
282
(
1992
).
14.
R. M.
May
, “
Simple mathematical models with very complicated dynamics
,”
Nature
261
(
5560
),
459
467
(
1976
).
15.
J. P.
Crutchfield
and
K.
Kaneko
, “
Phenomenology of spatio-temporal chaos
,” in
Directions in Chaos
(
World Scientific
,
1987
), Vol. 1, pp.
272
353
.
16.
K.
Kaneko
, “
Pattern dynamics in spatiotemporal chaos
,”
Physica D
34
(
1–2
),
1
41
(
1989
).
17.
K.
Kaneko
, “
Supertransients, spatiotemporal intermittency and stability of fully developed spatiotemporal chaos
,”
Phys. Lett. A
149
(
2–3
),
105
112
(
1990
).
18.
K.
Kaneko
, “
Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements
,”
Physica D
41
(
2
),
137
172
(
1990
).
19.
K.
Kaneko
, “
Chaotic traveling waves in a coupled map lattice
,”
Physica D
68
(
3–4
),
299
317
(
1993
).
20.
S.
Sinha
and
W. L.
Ditto
, “
Dynamics based computation
,”
Phys. Rev. Lett.
81
(
10
),
2156
(
1998
).
21.
C.
Kirst
,
C. D.
Modes
, and
M. O.
Magnasco
, “
Shifting attention to dynamics: Self-reconfiguration of neural networks
,”
Curr. Opin. Syst. Biol.
3
,
132
140
(
2017
).
22.
H. S.
Seung
, “
How the brain keeps the eyes still
,”
Proc. Natl. Acad. Sci.
93
(
23
),
13339
13344
(
1996
).
23.
H. S.
Seung
, “
Continuous attractors and oculomotor control
,”
Neural Netw.
11
(
7–8
),
1253
1258
(
1998
).
24.
H. S.
Seung
,
D. D.
Lee
,
B. Y.
Reis
, and
D. W.
Tank
, “
Stability of the memory of eye position in a recurrent network of conductance-based model neurons
,”
Neuron
26
(
1
),
259
271
(
2000
).
25.
Y.
Choe
,
M. O.
Magnasco
, and
A. J.
Hudspeth
, “
A model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels
,”
Proc. Natl. Acad. Sci.
95
(
26
),
15321
15326
(
1998
).
26.
S.
Camalet
,
T.
Duke
,
F.
Jülicher
, and
J.
Prost
, “
Auditory sensitivity provided by self-tuned critical oscillations of hair cells
,”
Proc. Natl. Acad. Sci.
97
(
7
),
3183
3188
(
2000
).
27.
V. M.
Eguíluz
,
M.
Ospeck
,
Y.
Choe
,
A. J.
Hudspeth
, and
M. O.
Magnasco
, “
Essential nonlinearities in hearing
,”
Phys. Rev. Lett.
84
(
22
),
5232
(
2000
).
28.
L.
Moreau
and
E.
Sontag
, “
Balancing at the border of instability
,”
Phys. Rev. E
68
(
2
),
020901
(
2003
).
29.
M. O.
Magnasco
, “
A wave traveling over a Hopf instability shapes the cochlear tuning curve
,”
Phys. Rev. Lett.
90
(
5
),
058101
(
2003
).
30.
T.
Duke
and
F.
Jülicher
, “
Active traveling wave in the cochlea
,”
Phys. Rev. Lett.
90
(
15
),
158101
(
2003
).
31.
A.
Kern
and
R.
Stoop
, “
Essential role of couplings between hearing nonlinearities
,”
Phys. Rev. Lett.
91
(
12
),
128101
(
2003
).
32.
E.
Bienenstock
and
D.
Lehmann
, “
Regulated criticality in the brain?
,”
Adv. Complex Syst.
1
(
04
),
361
384
(
1998
).
33.
C. K.
Machens
,
R.
Romo
, and
C. D.
Brody
, “
Flexible control of mutual inhibition: A neural model of two-interval discrimination
,”
Science
307
(
5712
),
1121
1124
(
2005
).
34.
T.
Gardner
,
G.
Cecchi
,
M.
Magnasco
,
R.
Laje
, and
G. B.
Mindlin
, “
Simple motor gestures for birdsongs
,”
Phys. Rev. Lett.
87
(
20
),
208101
(
2001
).
35.
M. M.
Churchland
,
J. P.
Cunningham
,
M. T.
Kaufman
,
J. D.
Foster
,
P.
Nuyujukian
,
S. I.
Ryu
, and
K. V.
Shenoy
, “
Neural population dynamics during reaching
,”
Nature
487
(
7405
),
51
(
2012
).
36.
A.
Amador
,
Y. S.
Perl
,
G. B.
Mindlin
, and
D.
Margoliash
, “
Elemental gesture dynamics are encoded by song premotor cortical neurons
,”
Nature
495
(
7439
),
59
(
2013
).
37.
G. B.
Mindlin
, “
Nonlinear dynamics in the study of birdsong
,”
Chaos: Interdiscip. J. Nonlinear Sci.
27
(
9
),
092101
(
2017
).
38.
M. O.
Magnasco
,
O.
Piro
, and
G. A.
Cecchi
, “
Self-tuned critical anti-Hebbian networks
,”
Phys. Rev. Lett.
102
(
25
),
258102
(
2009
).
39.
G.
Solovey
,
K. J.
Miller
,
J.
Ojemann
,
M. O.
Magnasco
, and
G. A.
Cecchi
, “
Self-regulated dynamical criticality in human ECoG
,”
Front. Integr. Neurosci.
6
,
44
(
2012
).
40.
L. M.
Alonso
,
A.
Proekt
,
T. H.
Schwartz
,
K. O.
Pryor
,
G. A.
Cecchi
, and
M. O.
Magnasco
, “
Dynamical criticality during induction of anesthesia in human ECoG recordings
,”
Front. Neural Circuits
8
,
20
(
2014
).
41.
G.
Solovey
,
L. M.
Alonso
,
T.
Yanagawa
,
N.
Fujii
,
M. O.
Magnasco
,
G. A.
Cecchi
, and
A.
Proekt
, “
Loss of consciousness is associated with stabilization of cortical activity
,”
J. Neurosci.
35
(
30
),
10866
10877
(
2015
).
42.
X.-H.
Yan
and
M. O.
Magnasco
, “
Input-dependent wave attenuation in a critically-balanced model of cortex
,”
PLoS One
7
(
7
),
e41419
(
2012
).
43.
K.
Hayton
,
D.
Moirogiannis
, and
M. O.
Magnasco
, “
Adaptive scales of spatial integration and response latencies in a critically-balanced model of the primary visual cortex
,”
PLoS One
13
,
e0196566
(
2018
).
44.
J. M.
Beggs
and
D.
Plenz
, “
Neuronal avalanches in neocortical circuits
,”
J. Neurosci.
23
(
35
),
11167
11177
(
2003
).
45.
A.
Levina
,
J. M.
Herrmann
, and
T.
Geisel
, “
Dynamical synapses causing self-organized criticality in neural networks
,”
Nat. Phys.
3
(
12
),
857
(
2007
).
46.
T.
Mora
and
W.
Bialek
, “
Are biological systems poised at criticality?
,”
J. Stat. Phys.
144
(
2
),
268
302
(
2011
).
47.
D. R.
Chialvo
, “
Emergent complex neural dynamics
,”
Nat. Phys.
6
(
10
),
744
(
2010
).
48.
S.
Bornholdt
and
T.
Röhl
, “
Self-organized critical neural networks
,”
Phys. Rev. E
67
(
6
),
066118
(
2003
).
49.
S.
Denève
and
C. K.
Machens
, “
Efficient codes and balanced networks
,”
Nat. Neurosci.
19
(
3
),
375
(
2016
).
50.
L. M.
Alonso
, “
Complex behavior in chains of nonlinear oscillators
,”
Chaos: Interdiscip. J. Nonlinear Sci.
27
(
6
),
063104
(
2017
).
51.
H. R.
Wilson
and
J. D.
Cowan
, “
Excitatory and inhibitory interactions in localized populations of model neurons
,”
Biophys. J.
12
(
1
),
1
24
(
1972
).
52.
L. M.
Alonso
, “
Nonlinear resonances and multi-stability in simple neural circuits
,”
Chaos: Interdiscip. J. Nonlinear Sci.
27
(
1
),
013118
(
2017
).
53.
M. A.
Trevisan
,
G. B.
Mindlin
, and
F.
Goller
, “
Nonlinear model predicts diverse respiratory patterns of birdsong
,”
Phys. Rev. Lett.
96
(
5
),
058103
(
2006
).
54.
A.
Destexhe
and
T. J.
Sejnowski
, “
The Wilson Cowan model, 36 years later
,”
Biol. Cybern.
101
(
1
),
1
2
(
2009
).
55.
M. J.
Feigenbaum
, “
Quantitative universality for a class of nonlinear transformations
,”
J. Stat. Phys.
19
(
1
),
25
52
(
1978
).
56.
G. B.
Mindlin
,
X.-J.
Hou
,
H. G.
Solari
,
R.
Gilmore
, and
N. B.
Tufillaro
, “
Classification of strange attractors by integers
,”
Phys. Rev. Lett.
64
(
20
),
2350
(
1990
).
57.
E.
Estevez-Rams
,
R.
Lora-Serrano
,
C. A. J.
Nuñes
, and
B.
Aragón-Fernández
, “
Lempel-Ziv complexity analysis of one dimensional cellular automata
,”
Chaos: Interdiscip. J. Nonlinear Sci.
25
(
12
),
123106
(
2015
).
58.
E.
Estevez-Rams
,
D.
Estevez-Moya
, and
B.
Aragón-Fernández
, “
Phenomenology of coupled nonlinear oscillators
,”
Chaos: Interdiscip. J. Nonlinear Sci.
28
(
2
),
023110
(
2018
).
59.
H.
Zenil
, “
Compression-based investigation of the dynamical properties of cellular automata and other systems
,”
Complex Syst.
19
(
1
),
1
28
(
2010
).
60.
D.
Moirogiannis
,
O.
Piro
, and
M. O.
Magnasco
, “
Renormalization of collective modes in large-scale neural dynamics
,”
J. Stat. Phys.
167
(
3–4
),
543
558
(
2017
).
61.
K.
Kaneko
, “
Period-doubling of kink-antikink patterns, quasiperiodicity in antiferro-like structures and spatial intermittency in coupled logistic lattice: Towards a prelude of a ‘field theory of chaos’
,”
Prog. Theor. Phys.
72
(
3
),
480
486
(
1984
).
62.
S.
Wolfram
, “
Universality and complexity in cellular automata
,”
Physica D
10
(
1–2
),
1
35
(
1984
).
63.
C. G.
Langton
, “
Computation at the edge of chaos: Phase transitions and emergent computation
,”
Physica D
42
(
1–3
),
12
37
(
1990
).
64.
K.
Kaneko
, “
Spatiotemporal intermittency in coupled map lattices
,”
Prog. Theor. Phys.
74
(
5
),
1033
1044
(
1985
).
65.
K.
Kaneko
, “
Lyapunov analysis and information flow in coupled map lattices
,”
Physica D
23
(
1–3
),
436
447
(
1986
).
You do not currently have access to this content.