Constructing a reliable and stable emotion recognition system is a critical but challenging issue for realizing an intelligent human-machine interaction. In this study, we contribute a novel channel-frequency convolutional neural network (CFCNN), combined with recurrence quantification analysis (RQA), for the robust recognition of electroencephalogram (EEG) signals collected from different emotion states. We employ movie clips as the stimuli to induce happiness, sadness, and fear emotions and simultaneously measure the corresponding EEG signals. Then the entropy measures, obtained from the RQA operation on EEG signals of different frequency bands, are fed into the novel CFCNN. The results indicate that our system can provide a high emotion recognition accuracy of 92.24% and a relatively excellent stability as well as a satisfactory Kappa value of 0.884, rendering our system particularly useful for the emotion recognition task. Meanwhile, we compare the performance of the entropy measures, extracted from each frequency band, in distinguishing the three emotion states. We mainly find that emotional features extracted from the gamma band present a considerably higher classification accuracy of 90.51% and a Kappa value of 0.858, proving the high relation between emotional process and gamma frequency band.

1.
R.
Picard
,
Affective Computing
(
MIT Press
,
2000
).
2.
M.
Pantic
and
L. J. M.
Rothkrantz
, “
Automatic analysis of facial expressions: The state of the art
,”
IEEE Trans. Pattern Anal. Mach. Intell.
22
(
12
),
1424
1445
(
2000
).
3.
Z.
Zeng
,
M.
Pantic
,
G. I.
Roisman
, and
T. S.
Huang
, “
A survey of affect recognition methods: Audio, visual, and spontaneous expressions
,”
IEEE Trans. Pattern Anal. Mach. Intell.
31
(
1
),
39
58
(
2009
).
4.
K.
Mistry
,
L.
Zhang
,
S. C.
Neoh
,
C. P.
Lim
, and
B.
Fielding
, “
A micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition
,”
IEEE Trans. Cybern.
47
(
6
),
1496
1509
(
2017
).
5.
M. E.
Ayadi
,
M. S.
Kamel
, and
F.
Karray
, “
Survey on speech emotion recognition: Features, classification schemes, and databases
,”
Pattern Recognit.
44
(
3
),
572
587
(
2011
).
6.
B.
Schuller
,
A.
Batliner
,
S.
Steidl
, and
D.
Seppi
, “
Recognising realistic emotions and affect in speech: State of the art and lessons learnt from the first challenge
,”
Speech Commun.
53
(
9–10
),
1062
1087
(
2011
).
7.
H. Y.
Meng
and
N.
Bianchi-Berthouze
, “
Affective state level recognition in naturalistic facial and vocal expressions
,”
IEEE Trans. Cybern.
44
(
3
),
315
328
(
2014
).
8.
H.
Gunes
and
M.
Piccardi
, “
Automatic temporal segment detection and affect recognition from face and body display
,”
IEEE Trans. Syst. Man Cybern. B
39
(
1
),
64
84
(
2009
).
9.
A.
Kleinsmith
and
N.
Bianchi-Berthouze
, “
Affective body expression perception and recognition: A survey
,”
IEEE Trans. Affect. Comput.
4
(
1
),
15
33
(
2013
).
10.
Y.
Gao
,
N.
Bianchi-Berthouze
, and
H.
Meng
, “
What does touch tell us about emotions in touchscreen-based gameplay?
,”
ACM Trans. Comput. Hum. Interact.
19
(
4
),
31
(
2012
).
11.
H. P.
Martinez
,
Y.
Bengio
, and
G. N.
Yannakakis
, “
Learning deep physiological models of affect
,”
IEEE Comput. Intell. Mag.
8
(
2
),
20
33
(
2013
).
12.
Y. P.
Lin
,
C. H.
Wang
,
T. P.
Jung
,
T. L.
Wu
,
S. K.
Jeng
,
J. R.
Duann
, and
J. H.
Chen
, “
EEG based emotion recognition in music listening
,”
IEEE Trans. Biomed. Eng.
57
(
7
),
1798
1806
(
2010
).
13.
P. C.
Petrantonakis
and
L. J.
Hadjileontiadis
, “
Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis
,”
IEEE Trans. Affect. Comput.
1
(
2
),
81
97
(
2010
).
14.
G.
Chanel
,
C.
Rebetez
,
M.
Btrancourt
, and
T.
Pun
, “
Emotion assessment from physiological signals for adaptation of game difficulty
,”
IEEE Trans. Syst. Man Cybern. A
41
(
6
),
1052
1063
(
2011
).
15.
H.
Xu
and
K. N.
Plataniotis
, “
Affect recognition using EEG signal
,” in
Proceedings of 14th IEEE International Workshop on Multimedia Signal Processing (MMSP)
(
IEEE
,
2012
), pp.
299
304
.
16.
S. K.
Hadjidimitriou
and
L. J.
Hadjileontiadis
, “
EEG-based classification of music appraisal responses using time-frequency analysis and familiarity ratings
,”
IEEE Trans. Affect. Comput.
4
(
2
),
161
172
(
2013
).
17.
X.
Chai
,
Q. S.
Wang
,
Y. P.
Zhao
,
Y. Q.
Li
,
D.
Liu
,
X.
Liu
, and
O.
Bai
, “
A fast, efficient domain adaptation technique for cross-domain electroencephalography (EEG)-based emotion recognition
,”
Sensors
17
(
5
),
1014
(
2017
).
18.
G. L.
Ahern
and
G. E.
Schwartz
, “
Differential lateralization for positive and negative emotion in the human brain: EEG spectral analysis
,”
Neuropsychologia
23
(
6
),
745
755
(
1985
).
19.
U. R.
Acharya
,
O.
Faust
,
N.
Kannathal
,
T. J.
Chua
, and
S.
Laxminarayan
, “
Non-linear analysis of EEG signals at various sleep stages
,”
Comput. Methods Programs Biomed.
80
(
1
),
37
45
(
2005
).
20.
K. C.
Chua
,
V.
Chandran
,
U. R.
Acharya
, and
C. M.
Lim
, “
Analysis of epileptic EEG signals using higher order spectra
,”
J. Med. Eng. Technol.
33
(
1
),
42
50
(
2009
).
21.
Z. D.
Mu
,
J. F.
Hu
,
J. L.
Min
, and
J. H.
Yin
, “
Comparison of different entropies as features for person authentication based on EEG signals
,”
IET Biom.
6
(
6
),
409
417
(
2017
).
22.
O.
De Wel
,
M.
Lavanga
,
A. C.
Dorado
,
K.
Jansen
,
A.
Dereymaeker
,
G.
Naulaers
, and
S.
Van Huffel
, “
Complexity analysis of neonatal EEG using multiscale entropy: Applications in brain maturation and sleep stage classification
,”
Entropy
19
(
10
),
516
(
2017
).
23.
Z. K.
Gao
,
Q.
Cai
,
Y. X.
Yang
,
W. D.
Dang
, and
S. S.
Zhang
, “
Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series
,”
Sci. Rep.
6
,
35662
(
2016
).
24.
Z. K.
Gao
,
Q.
Cai
,
Y. X.
Yang
,
N.
Dong
, and
S. S.
Zhang
, “
Visibility graph from adaptive optimal kernel time-frequency representation for classification of epileptic from EEG
,”
Int. J. Neural Syst.
27
(
4
),
1750005
(
2017
).
25.
J.-P.
Eckmann
,
S. O.
Kamphorst
, and
D.
Ruelle
, “
Recurrence plots of dynamical systems
,”
Europhys. Lett.
4
(
9
),
973
977
(
1987
).
26.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
(
5–6
),
237
329
(
2007
).
27.
L. L.
Trulla
,
A.
Giuliani
,
J. P.
Zbilut
, and
C. L.
Webber
, “
Recurrence quantification analysis of the logistic equation with transients
,”
Phys. Lett. A
223
(
4
),
255
260
(
1996
).
28.
J. P.
Zbilut
and
C. L.
Webber
, Jr.
, “
Embeddings and delays as derived from quantification of recurrence plots
,”
Phys. Lett. A
171
(
3–4
),
199
203
(
1992
).
29.
H.
Yang
, “
Multiscale recurrence quantification analysis of spatial cardiac vector cardiogram signals
,”
IEEE Trans. Biomed. Eng.
58
(
2
),
339
347
(
2011
).
30.
X. L.
Li
,
G. X.
Ouyang
,
X.
Yao
, and
X. P.
Guan
, “
Dynamical characteristics of pre-epileptic seizures in rats with recurrence quantification analysis
,”
Phys. Lett. A
333
(
1–2
),
164
171
(
2004
).
31.
U. R.
Acharya
,
V. S.
Sree
,
S.
Chattopadhyay
,
W. W.
Yu
, and
A. P. C.
Alvin
, “
Application of recurrence quantification analysis for the automated identification of epileptic EEG signals
,”
Int. J. Neural Syst.
21
(
3
),
199
211
(
2011
).
32.
L. H.
Song
,
D. S.
Lee
, and
S. I.
Kim
, “
Recurrence quantification analysis of sleep electroencephalogram in sleep apnea syndrome in humans
,”
Neurosci. Lett.
366
(
2
),
148
153
(
2004
).
33.
U. R.
Acharya
,
V. K.
Sudarshan
,
H.
Adeli
,
J.
Santhosh
,
J. E. W.
Koh
,
S. D.
Puthankatti
, and
A.
Adeli
, “
A novel depression diagnosis index using nonlinear features in EEG signals
,”
Eur. Neurol.
74
(
1–2
),
79
83
(
2015
).
34.
N.
Talebi
,
A. M.
Nasrabadi
, and
T.
Curran
, “
Investigation of changes in EEG complexity during memory retrieval: The effect of midazolam
,”
Cogn. Neurodyn.
6
(
6
),
537
546
(
2012
).
35.
K.
Becker
,
G.
Schneider
,
M.
Eder
,
A.
Ranft
,
E. F.
Kochs
,
W.
Zieglgansberger
, and
H. U.
Dodt
, “
Anaesthesia monitoring by recurrence quantification analysis of EEG data
,”
PLoS One
5
(
1
),
e8876
(
2010
).
36.
X. W.
Wang
,
D.
Nie
, and
B. L.
Lu
, “
Emotional state classification from EEG data using machine learning approach
,”
Neurocomputing
129
,
94
106
(
2014
).
37.
H.
Shahabi
and
S.
Moghimi
, “
Toward automatic detection of brain responses to emotional music through analysis of EEG effective connectivity
,”
Comput. Hum. Behav.
58
,
231
239
(
2016
).
38.
G. E.
Hinton
and
R. R.
Salakhutdinov
, “
Reducing the dimensionality of data with neural networks
,”
Science
313
(
5786
),
504
507
(
2006
).
39.
Y.
LeCun
and
Y.
Bengio
, “
Convolutional networks for images, speech, and time series
,” in
The Handbook of Brain Theory and Neural Networks
(
MIT Press
,
1995
), pp.
255
258
.
40.
S.
Hochreiter
and
J.
Schmidhuber
, “
Long short-term memory
,”
Neural Comput.
9
(
8
),
1735
1780
(
1997
).
41.
F. A.
Gers
,
N. N.
Schraudolph
, and
J.
Schmidhuber
, “
Learning precise timing with LSTM recurrent networks
,”
J. Mach. Learn. Res.
3
(
1
),
115
143
(
2003
).
42.
W. L.
Zheng
and
B. L.
Lu
, “
Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
,”
IEEE Trans. Auton. Ment. Dev.
7
(
3
),
162
175
(
2015
).
43.
X.
Li
,
D. W.
Song
,
P.
Zhang
,
G. L.
Yu
,
Y. X.
Hou
, and
B.
Hu
, “
Emotion recognition from multi-channel EEG data through convolutional recurrent neural network
,” in
Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
(
IEEE COMPUTER SOC
,
2016
), pp.
352
359
.
44.
G. L.
Yu
,
X.
Li
,
D. W.
Song
,
X. Z.
Zhao
,
P.
Zhang
,
Y. X.
Hou
, and
B.
Hu
, “
Encoding physiological signals as images for affective state recognition using convolutional neural networks
,” in
Proceedings of 38th International Conference on IEEE Engineering Medicine and Biology Society (EMBC)
(
IEEE
,
2016
), pp.
812
815
.
45.
T. K.
Marcha
,
S. C.
Chapman
, and
R. O.
Dendy
, “
Recurrence plot statistics and the effect of embedding
,”
Physica D
200
,
171
184
(
2005
).
46.
B.
Goswami
,
N.
Marwan
,
G.
Feulner
, and
J.
Kurths
, “
How do global temperature drivers influence each other? A network perspective using recurrences
,”
Eur. Phys. J. Spec. Top.
222
,
861
873
(
2013
).
47.
E. J.
Ngamga
,
S.
Bialonski
,
N.
Marwan
,
J.
Kurths
,
C.
Geier
, and
K.
Lehnertz
, “
Evaluation of selected recurrence measures in discriminating pre-ictal and inter-ictal periods from epileptic EEG data
,”
Phys. Lett. A
380
(
16
),
1419
1425
(
2016
).
48.
N.
Marwan
, “
How to avoid potential pitfalls in recurrence plot based data analysis
,”
Int. J. Bifurcat. Chaos
21
(
4
),
1003
1017
(
2011
).
49.
S.
Schinkel
,
O.
Dimigen
, and
N.
Marwan
, “
Selection of recurrence threshold for signal detection
,”
Eur. Phys. J. Spec. Top.
164
,
45
53
(
2008
).
50.
V.
Nair
and
G. E.
Hinton
, “
Rectified linear units improve restricted Boltzmann machines
,” in
Proceedings of 27th International Conference on Machine Learning
(
Omnipress
,
USA
,
2010
), pp.
807
814
.
51.
F.
Chollet
, see https://github.com/fchollet/keras for “
Keras: Deep Learning Library for Theano and TensorFlow
” (
2015
).
52.
S.
Ioffe
and
C.
Szegedy
, “
Batch normalization: Accelerating deep network training by reducing internal covariate shift
,”
Proceedings of Machine Learning Research (PMLR)
37
,
448
456
(
2015
).
53.
X.
Glorot
and
Y.
Bengio
, “
Understanding the difficulty of training deep feedforward neural networks
,”
Proceedings of Machine Learning Research (PMLR)
9
,
249
256
(
2010
).
54.
L.
Bottou
, “
Large-scale machine learning with stochastic gradient descent
,” in
Proceedings of 19th International Conference on Computational Statistics
(
Physica-Verlag
,
Springer
,
2010
), pp. 177–186.
55.
D. E.
Rumelhart
,
G. E.
Hinton
, and
R. J.
Williams
, “
Learning representations by back-propagating errors
,”
Nature
323
(
6088
),
533
536
(
1986
).
56.
J.
Cohen
, “
A coefficient of agreement for nominal scales
,”
Educ. Psychol. Meas.
20
(
1
),
37
46
(
1960
).
57.
Y. R.
Tabar
and
U.
Halici
, “
A novel deep learning approach for classification of EEG motor imagery signals
,”
J. Neural Eng.
14
,
016003
(
2017
).
58.
S.
Aydin
,
S.
Demirtas
,
K.
Ates
, and
M. A.
Tunga
, “
Emotion recognition with eigen features of frequency band activities embedded in induced brain oscillations mediated by affective pictures
,”
Int. J. Neural Syst.
26
(
3
),
1650013
(
2016
).
59.
M. M.
Muller
,
A.
Keil
,
T.
Gruber
, and
T.
Elbert
, “
Processing of affective pictures modulates right hemispheric gamma band EEG activity
,”
Clin. Neurophysiol.
110
(
11
),
1913
1920
(
1999
).
60.
M. A.
Kisley
and
Z. M.
Cornwell
, “
Gamma and beta neural activity evoked during a sensory gating paradigm: Effects of auditory, somatosensory and cross-modal stimulation
,”
Clin. Neurophysiol.
117
(
11
),
2549
2563
(
2006
).
You do not currently have access to this content.