Recurrence plots of time series generated by discrete fractional Gaussian noise (fGn) processes are analyzed. We compute the probabilities of occurrence of consecutive recurrence points forming diagonals and verticals in the recurrence plot constructed without embedding. We focus on two recurrence quantification analysis measures related to these lines, respectively, the percent determinism and the laminarity (LAM). The behavior of these two measures as a function of the fGn’s Hurst exponent H is investigated. We show that the dependence of the laminarity with respect to H is monotonic in contrast to the percent determinism. We also show that the length of the diagonal and vertical lines involved in the computation of percent determinism and laminarity has an influence on their dependence on H. Statistical tests performed on the LAM measure support its utility to discriminate fGn processes with respect to their H values. These results demonstrate that recurrence plots are suitable for the extraction of quantitative information on the correlation structure of these widespread stochastic processes.

1.
J.
Eckmann
,
S.
Kamphorst
, and
D.
Ruelle
, “
Recurrence plots of dynamical systems
,”
Europhys. Lett.
4
,
973
977
(
1987
).
2.
J.
Zbilut
and
C.
Webber
, “
Embeddings and delays as derived from quantification of recurrence plots
,”
Phys. Lett. A
171
,
199
203
(
1992
).
3.
C.
Webber
and
J.
Zbilut
, “
Dynamical assessment of physiological systems and states using recurrence plot strategies
,”
J. Appl. Physiol.
76
,
965
973
(
1994
).
4.
N.
Marwan
,
M.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
,
237
329
(
2007
).
5.
C.
Webber
and
N.
Marwan
,
Recurrence Quantification Analysis
(
Springer International Publishing
,
2015
).
6.
N.
Marwan
,
N.
Wessel
,
U.
Meyerfeldt
,
A.
Schirdewan
, and
J.
Kurths
, “
Recurrence plot based measures of complexity and its application to heart rate variability data
,”
Phys. Rev. E
66
,
026702
(
2002
).
7.
J. B.
Gao
, “
Recurrence time statistics for chaotic systems and their applications
,”
Phys. Rev. Lett.
83
,
3178
3181
(
1999
).
8.
J.
Gao
and
H.
Cai
, “
On the structures and quantification of recurrence plots
,”
Phys. Lett. A
270
,
75
87
(
2000
).
9.
S.
Ramdani
,
F.
Bouchara
,
J.
Lagarde
, and
A.
Lesne
, “
Recurrence plots of discrete-time gaussian stochastic processes
,”
Physica D
330
,
17
31
(
2016
).
10.
B.
Mandelbrot
and
J.
van Ness
, “
Fractional brownian motions fractional noises and applications
,”
SIAM Rev.
10
,
422
437
(
1968
).
11.
J.
Beran
,
Statistics for Long-Memory Processes
(
Chapman & Hall
,
1994
).
12.
N.
Packard
,
J.
Crutchfield
,
J.
Farmer
, and
R.
Shaw
, “
Geometry from a time series
,”
Phys. Rev. Lett.
45
,
712
716
(
1980
).
13.
F.
Takens
, “
Detecting strange attractors in turbulence
,” in
Dynamical Systems and Turbulence, Warwick 1980
(
Springer
,
1981
), pp.
712
716
.
14.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
, 2nd ed. (
Cambridge University Press
,
2004
).
15.
A.
Papoulis
and
S.
Pillai
,
Probability, Random Variables and Stochastic Processes
, 4th ed. (
McGraw-Hill Higher Education
,
2002
).
16.
C.
Rasmussen
and
C.
Williams
,
Gaussian Processes for Machine Learning
(
MIT Press
,
2006
).
17.
A.
Genz
, “
Numerical computation of multivariate normal probabilities
,”
J. Comput. Graph. Stat.
1
,
141
149
(
1992
).
18.
J.-M.
Bardet
,
G.
Lang
,
G.
Oppenheim
,
A.
Philippe
,
S.
Stoev
, and
M.
Taqqu
, “
Generators of long-range dependence processes: A survey
,” in
Theory and Applications of Long-Range Dependence
(
Birkhäuser
,
2003
), pp.
579
623
.
19.
S.
Lowen
, “
Efficient generation of fractional brownian motion for simulation of infrared focal-plane array calibration drift
,”
Methodol. Comput. Appl.
1
,
445
456
(
1999
).
20.
S.
Stoev
and
M.
Taqqu
, “
Simulation methods for linear fractional stable motion and FARIMA using the fast Fourier transform
,”
Fractals
12
,
95
121
(
2003
).
21.
P.
Abry
and
F.
Sellan
, “
The wavelet-based synthesis for the fractional brownian motion proposed by F. Sellan and Y. Meyer: Remarks and fast implementation
,”
Appl. Comput. Harmon. Anal.
3
,
377
383
(
1996
).
22.
C.
Peng
,
J.
Mietus
,
J.
Hausdorff
,
S.
Havlin
,
H.
Stanley
, and
A.
Goldberger
, “
Long-range anti-correlations and non-Gaussian behavior of the heartbeat
,”
Phys. Rev. Lett.
70
,
1343
1346
(
1993
).
23.
J.
Moreira
,
J.
Kamphorst
,
L.
da Silva
, and
S.
Kamphorst
, “
On the fractal dimension of self-affine profiles
,”
J. Phys. A
27
,
8079
8089
(
1994
).
24.
D.
Delignieres
,
S.
Ramdani
,
L.
Lemoine
,
K.
Torre
,
M.
Fortes
, and
G.
Ninot
, “
Fractal analyses for ‘short’ time series: A re-assessment of classical methods
,”
J. Math. Psychol.
50
,
525
544
(
2006
).
25.
P.
Abry
,
P.
Flandrin
,
M.
Taqqu
, and
D.
Veitch
, “t,” in
Theory and Applications of Long-Range Dependence
(
Birkhäuser
,
2003
), pp.
527
556
.
26.
J.-M.
Bardet
,
G.
Lang
,
G.
Oppenheim
,
A.
Philippe
,
S.
Stoev
, and
M.
Taqqu
, “
Semi-parametric estimation of the long-range dependence parameter: A survey
,” in
Theory and Applications of Long-Range Dependence
(
Birkhäuser
,
2003
), pp.
557
577
.
27.
M.
Grendár
,
J.
Majerová
, and
V.
Špitalský
, “
Strong laws for recurrence quantification analysis
,”
Int. J. Bifurcat. Chaos
23
,
1350147
(
2013
).
28.
D.
Schultz
,
S.
Spiegel
,
N.
Marwan
, and
S.
Albayrak
, “
Approximation of diagonal line based measures in recurrence quantification analysis
,”
Phys. Lett. A
379
,
997
1011
(
2015
).
29.
S.
Spiegel
,
D.
Schultz
, and
N.
Marwan
, “
Approximate recurrence quantification analysis (arqa) in code of best practice
,” in
Recurrence Plots and Their Quantifications: Expanding Horizons
, Springer Proceedings in Physics Vol. 180, edited by
C.
Webber
,
C.
Ioana
, and
N.
Marwan
(
Springer
,
Cham
,
2016
), pp.
113
136
.
30.
Y.
Zou
,
R. V.
Donner
, and
J.
Kurths
, “
Analyzing long-term correlated stochastic processes by means of recurrence networks: Potentials and pitfalls
,”
Phys. Rev. E
91
,
022926
(
2015
).
You do not currently have access to this content.