The appropriate selection of recurrence thresholds is a key problem in applications of recurrence quantification analysis and related methods across disciplines. Here, we discuss the distribution of pairwise distances between state vectors in the studied system’s state space reconstructed by means of time-delay embedding as the key characteristic that should guide the corresponding choice for obtaining an adequate resolution of a recurrence plot. Specifically, we present an empirical description of the distance distribution, focusing on characteristic changes of its shape with increasing embedding dimension. Our results suggest that selecting the recurrence threshold according to a fixed percentile of this distribution reduces the dependence of recurrence characteristics on the embedding dimension in comparison with other commonly used threshold selection methods. Numerical investigations on some paradigmatic model systems with time-dependent parameters support these empirical findings.

1.
F.
Takens
, “
Detecting strange attractors in turbulence
,”
Lect. Notes Math.
898
,
366
381
(
1981
).
2.
C.
Letellier
and
L. A.
Aguirre
, “
Investigating nonlinear dynamics from time series: The influence of symmetries and the choice of observables
,”
Chaos
12
,
549
558
(
2002
).
3.
N.
Packard
,
J.
Crutchfield
,
J.
Farmer
, and
R.
Shaw
, “
Geometry from a time series
,”
Phys. Rev. Lett.
45
,
712
716
(
1980
).
4.
J.-P.
Eckmann
,
S.
Oliffson Kamphorst
, and
D.
Ruelle
, “
Recurrence plots of dynamical systems
,”
Europhys. Lett.
4
,
973
977
(
1987
).
5.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
,
237
329
(
2007
).
6.
G. M.
Mindlin
and
R.
Gilmore
, “
Topological analysis and synthesis of chaotic time series
,”
Physica D
58
,
229
242
(
1992
).
7.
J. P.
Zbilut
and
C. L.
Webber, Jr.
, “
Embeddings and delays as derived from quantification of recurrence plots
,”
Phys. Lett. A
171
,
199
203
(
1992
).
8.
J. P.
Zbilut
,
J.-M.
Zaldívar-Comenges
, and
F.
Strozzi
, “
Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data
,”
Phys. Lett. A
297
,
173
181
(
2002
).
9.
M.
Thiel
,
M. C.
Romano
,
J.
Kurths
,
R.
Meucci
,
E.
Allaria
, and
F. T.
Arecchi
, “
Influence of observational noise on the recurrence quantification analysis
,”
Physica D
171
,
138
152
(
2002
).
10.
S.
Schinkel
,
O.
Dimigen
, and
N.
Marwan
, “
Selection of recurrence threshold for signal detection
,”
Eur. Phys. J. Spec. Top.
164
,
45
53
(
2008
).
11.
L.
Matassini
,
H.
Kantz
,
J. A.
Hołyst
, and
R.
Hegger
, “
Optimizing of recurrence plots for noise reduction
,”
Phys. Rev. E
65
,
021102
(
2002
).
12.
N.
Marwan
,
J. F.
Donges
,
Y.
Zou
,
R. V.
Donner
, and
J.
Kurths
, “
Complex network approach for recurrence analysis of time series
,”
Phys. Lett. A
373
,
4246
4254
(
2009
).
13.
R. V.
Donner
,
J.
Heitzig
,
J. F.
Donges
,
Y.
Zou
,
N.
Marwan
, and
J.
Kurths
, “
The geometry of chaotic dynamics—a complex network perspective
,”
Eur. Phys. J. B
84
,
653
672
(
2011
).
14.
J. F.
Donges
,
J.
Heitzig
,
R. V.
Donner
, and
J.
Kurths
, “
Analytical framework for recurrence network analysis of time series
,”
Phys. Rev. E
85
,
046105
(
2012
).
15.
R.
Jacob
,
K. P.
Harikrishnan
,
R.
Misra
, and
G.
Ambika
, “
Uniform framework for the recurrence-network analysis of chaotic time series
,”
Phys. Rev. E
93
,
012202
(
2016
).
16.
D.
Eroglu
,
N.
Marwan
,
S.
Prasad
, and
J.
Kurths
, “
Finding recurrence networks’ threshold adaptively for a specific time series
,”
Nonlinear Process. Geophys.
21
,
1085
1092
(
2014
).
17.
M.
Wiedermann
,
J. F.
Donges
,
J.
Kurths
, and
R. V.
Donner
, “
Mapping and discrimination of networks in the complexity-entropy plane
,”
Phys. Rev. E
96
,
042304
(
2017
).
18.
M.
Koebbe
and
G.
Mayer-Kress
, “Use of recurrence plots in the analysis of time-series data,” in Proceedings of SFI Studies in the Science of Complexity, edited by M. Casdagli and S. Eubank (Addison-Wesley, Redwood City, 1992), Vol. XXI, pp. 361–378.
19.
A.
Zimek
,
E.
Schubert
, and
H. P.
Kriegel
, “
A survey on unsupervised outlier detection in high-dimensional numerical data
,”
Stat. Anal. Data Min.
5
,
363
387
(
2012
).
20.
T.
Sauer
,
J. A.
Yorke
, and
M.
Casdagli
, “
Embedology
,”
J. Stat. Phys.
65
,
579
616
(
1991
).
21.
R.
Hegger
,
H.
Kantz
,
L.
Matassini
, and
T.
Schreiber
, “
Coping with nonstationarity by overembedding
,”
Phys. Rev. Lett.
84
,
4092
4095
(
2000
).
22.
A. M.
Fraser
and
H. L.
Swinney
, “
Independent coordinates for strange attractors from mutual information
,”
Phys. Rev. A
33
,
1134
1140
(
1986
).
23.
M. R.
Leadbetter
,
G.
Lindgren
, and
H.
Rootzen
,
Extremes and Related Properties of Random Sequences and Processes
(
Springer
,
New York
,
1983
).
24.
H. D.
Abarbanel
,
Analysis of Observed Chaotic Data
(
Springer
,
New York
,
1996
).
25.
M.
Thiel
,
M. C.
Romano
, and
J.
Kurths
, “
Spurious structures in recurrence plots induced by embedding
,”
Nonlinear Dyn.
44
,
299
305
(
2006
).
26.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
27.
E. J.
Ngamga
,
S.
Bialonski
,
N.
Marwan
,
J.
Kurths
,
C.
Geier
, and
K.
Lehnertz
, “
Evaluation of selected recurrence measures in discriminating pre-ictal and inter-ictal periods from epileptic EEG data
,”
Phys. Lett. A
380
,
1419
1425
(
2016
).
28.
M. A.
Little
,
P. E.
McSharry
,
S. J.
Roberts
,
D. A. E.
Costello
, and
I. M.
Moroz
, “
Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection
,”
Biomed. Eng. Online
6
,
1
19
(
2007
).
29.
M. S.
Baptista
,
E. J.
Ngamga
,
P. R. F.
Pinto
,
M.
Brito
, and
J.
Kurths
, “
Kolmogorov-Sinai entropy from recurrence times
,”
Phys. Lett. A
374
,
1135
1140
(
2010
).
30.
J.
Lekscha
and
R. V.
Donner
, “
Phase space reconstruction for non-uniformly sampled noisy time series
,” Chaos
28
,
085702
(
2018
).
31.
D.
Freedman
and
P.
Diaconis
, “
On the histogram as a density estimator: l2 theory
,”
Z. Wahrscheinlichkeitstheorie verw. Gebiete
57
,
453
476
(
1981
).
You do not currently have access to this content.