We study the standard nontwist map that describes the dynamic behaviour of magnetic field lines near a local minimum or maximum of frequency. The standard nontwist map has a shearless invariant curve that acts like a barrier in phase space. Critical parameters for the breakup of the shearless curve have been determined by procedures based on the indicator points and bifurcations of periodical orbits, a methodology that demands high computational cost. To determine the breakup critical parameters, we propose a new simpler and general procedure based on the determinism analysis performed on the recurrence plot of orbits near the critical transition. We also show that the coexistence of islands and chaotic sea in phase space can be analysed by using the recurrence plot. In particular, the measurement of determinism from the recurrence plot provides us with a simple procedure to distinguish periodic from chaotic structures in the parameter space. We identify an invariant shearless breakup scenario, and we also show that recurrence plots are useful tools to determine the presence of periodic orbit collisions and bifurcation curves.

1.
D.
Del-Castillo-Negrete
and
P. J.
Morrison
,
Phys. Fluids A
5
,
948
(
1993
).
2.
D.
Del-Castillo-Negrete
,
J. M.
Greene
, and
P. J.
Morrison
,
Physica D
91
,
1
(
1996
).
3.
W.
Horton
,
H. B.
Park
,
J. M.
Kwon
,
D.
Strozzi
,
P. J.
Morrison
, and
D. I.
Choi
,
Phys. Plasmas
5
,
3910
(
1998
).
4.
C. G. L.
Martins
,
R. E.
de Carvalho
,
I. L.
Caldas
, and
M.
Roberto
,
J. Phys. A
43
,
175501
(
2010
).
5.
J. D.
Szezech, Jr.
,
I. L.
Caldas
,
S. R.
Lopes
,
R. L.
Viana
, and
P. J.
Morrison
,
Chaos
19
,
043108
(
2009
).
6.
J. D.
Szezech, Jr.
,
I. L.
Caldas
,
S. R.
Lopes
,
P. J.
Morrison
, and
R. L.
Viana
,
Phys. Rev. E
86
,
036206
(
2012
).
7.
J. M.
Greene
,
J. Math. Phys.
20
,
1183
(
1979
).
8.
J. P.
Zbilut
and
C. L.
Webber, Jr.
,
Phys. Lett. A
171
,
199
(
1992
).
9.
C. L.
Webber, Jr.
and
J. P.
Zbilut
,
J. Appl. Physiol.
76
,
965
(
1994
).
10.
M. S.
Santos
,
J. D.
Szezech, Jr.
,
A. M.
Batista
,
I. L.
Caldas
,
R. L.
Viana
, and
S. R.
Lopes
,
Phys. Lett. A
379
,
2188
(
2015
).
11.
M. S.
Santos
,
J. D.
Szezech
,
F. S.
Borges
,
K. C.
Iarosz
,
I. L
Caldas
,
A. M.
Batista
,
R. L.
Viana
, and
J.
Kurths
,
Chaos Solitons Fractals
101
,
86
(
2017
).
12.
V.
Mitra
,
B.
Sarma
,
A.
Sarma
,
M. S.
Janaki
,
A. N. S.
Iyengar
,
N.
Marwan
, and
J.
Kurths
,
Phys. Plasmas
23
,
062312
(
2016
).
13.
N.
Slater
,
Proc. Cambridge Philos. Soc.
63
,
1115
(
1967
).
14.
C. V.
Abud
and
I. L.
Caldas
,
Physica D
308
,
34
(
2015
).
15.
E. G.
Altmann
,
G.
Cristadoro
, and
D.
Pazó
,
Phys. Rev. E
73
,
056201
(
2006
).
16.
Y.
Zou
,
M.
Thiel
,
M. C.
Romano
, and
J.
Kurths
,
Chaos
17
,
043101
(
2007
).
17.
A.
Wurm
,
A.
Apte
, and
P. J.
Morrison
,
Braz. J. Phys.
34
,
1700
(
2004
).
18.
K.
Fuchss
,
A.
Wurm
,
A.
Apte
, and
P. J.
Morrison
,
Chaos
16
,
033120
(
2006
).
19.
A.
Apte
,
A.
Wurn
, and
P. J.
Morrison
,
Chaos
13
,
421
(
2003
).
20.
21.
D.
Del-Castillo-Negrete
and
M.-C.
Firpo
,
Chaos
12
,
496
(
2002
).
22.
J. D.
Meiss
,
Rev. Mod. Phys.
64
,
795
(
1992
).
23.
J. P.
Eckmann
,
S. O.
Kamphorst
, and
D.
Ruelle
,
Europhys. Lett.
4
,
973
(
1987
).
24.
N.
Marwan
,
Eur. Phys. J. Spec. Top.
164
,
3
(
2008
).
25.
M. C.
Romano
,
M.
Thiel
,
J.
Kurths
, and
C.
Grebogi
,
Phys. Rev. E
76
,
036211
(
2007
).
26.
27.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
,
Phys. Rep.
438
,
237
(
2007
).
28.
J.
Laskar
,
C.
Froeschlé
, and
A.
Celleti
,
Physica D
56
,
253
(
1992
).
29.
S.
Shinohara
and
Y.
Aizawa
,
Prog. Theor. Phys.
100
,
219
(
1998
).
30.
A.
Wurm
,
A.
Apte
,
K.
Fuchss
, and
P. J.
Morrison
,
Chaos
15
,
023108
(
2005
).
31.
Y.
Zou
,
R. V.
Donner
,
M.
Thiel
, and
J.
Kurths
,
Chaos
26
,
023120
(
2016
).
You do not currently have access to this content.