It is rarely possible to precisely characterise the system underlying a series of observations. Hypothesis testing, which involves assessing simple assumptions about driving mechanisms, provides hope that we can at least rule out certain possibilities regarding the nature of the system. Unfortunately, the brevity, nonstationarity, and symbolic nature of certain time series of interest undermines traditional hypothesis tests. Fortunately, recurrence quantification analysis (RQA) has an established record of success in understanding short and nonstationary time series. We evaluate the suitability of measures of RQA as test statistics in surrogate data tests of the hypothesis that ten compositions by the Baroque composer J. S. Bach (1685–1750) arose from a Markov chain. More specifically, we estimate the size (the rate at which true hypotheses are incorrectly rejected) and power (the rate at which false hypotheses are correctly rejected) from empirical rejection rates across 1000 realisations, for each of the ten compositions, of the surrogate algorithm. We compare hypothesis tests based on RQA measures to tests based on the conditional entropy, an established test statistic for surrogate data tests of Markov order, and find that the RQA measure Lmax provides more consistent rejection of the fairly implausible hypothesis that Bach’s brain was a Markov chain.

1.
S. J.
Mithen
,
The Singing Neanderthals: The Origins of Music, Language, Mind, and Body
(
Harvard University Press
,
2005
).
2.
M.
Trimble
, and
D.
Hesdorffer
, “
Music and the brain: The neuroscience of music and musical appreciation
,”
BJPsych Int.
14
(
2
),
28
(
2017
).
3.
T.
Schäfer
,
P.
Sedlmeier
,
C.
Städtler
, and
D.
Huron
, “
The psychological functions of music listening
,”
Front. Psychol.
4
,
511
(
2013
).
4.
X. F.
Liu
,
K. T.
Chi
, and
M.
Small
, “
Complex network structure of musical compositions: Algorithmic generation of appealing music
,”
Phys. A: Stat. Mech. Appl.
389
(
1
),
126
132
(
2010
).
5.
A.
Klapuri
, and
M.
Davy
,
Signal Processing Methods for Music Transcription
(
Springer Science & Business Media
,
2007
).
6.
J.
Theiler
, and
D.
Prichard
, “Using ‘surrogate surrogate data’ to calibrate the actual rate of false positives in tests for nonlinearity in time series,” in
Nonlinear Dynamics and Time Series: Building a Bridge between the Natural and Statistical Sciences
, Ser. Fields Institute Communications Vol. 11, edited by
C. D.
Cutler
and
D. T.
Kaplan
(
American Mathematical Society
,
Providence, RI
,
1997
), pp.
99
112
.
7.
G.
Schwarz
, et al., “
Estimating the dimension of a model
,”
Ann. Stat.
6
(
2
),
461
464
(
1978
).
8.
S.
Sinha
,
M. D.
Schroeder
,
U.
Unnerstall
,
U.
Gaul
, and
E. D.
Siggia
, “
Cross-species comparison significantly improves genome-wide prediction of cis-regulatory modules in drosophila
,”
BMC Bioinform.
5
(
1
),
129
(
2004
).
9.
A.
Krogh
,
M.
Brown
,
I. S.
Mian
,
K.
Sjölander
, and
D.
Haussler
, “
Hidden markov models in computational biology: Applications to protein modeling
,”
J. Mol. Biol.
235
(
5
),
1501
1531
(
1994
).
10.
L.
Saul
, and
F.
Pereira
, “
Aggregate and mixed-order markov models for statistical language processing
,” preprint arXiv:cmp-lg/9706007 (
1997
).
11.
P.
Singer
,
D.
Helic
,
B.
Taraghi
, and
M.
Strohmaier
, “
Detecting memory and structure in human navigation patterns using markov chain models of varying order
,”
PLoS One
9
(
7
),
e102070
(
2014
).
12.
J.
Sakellariou
,
F.
Tria
,
V.
Loreto
, and
F.
Pachet
, “
Maximum entropy models capture melodic styles
,”
Sci. Rep.
7
(
1
),
9172
(
2017
).
13.
A.
Van Der Merwe
, and
W.
Schulze
, “
Music generation with markov models
,”
IEEE Multimed.
18
(
3
),
78
85
(
2011
).
14.
F.
Pachet
, “
The continuator: Musical interaction with style
,”
J. New Music Res.
32
(
3
),
333
341
(
2003
).
15.
D.
Conklin
, “
Music generation from statistical models
,” in
Proceedings of the AISB 2003 Symposium on Artificial Intelligence and Creativity in the Arts and Sciences
(
Citeseer
,
2003
), pp.
30
35
.
16.
M.
Papapetrou
, and
D.
Kugiumtzis
, “
Markov chain order estimation with parametric significance tests of conditional mutual information
,”
Simul. Model. Pract. Theory
61
,
1
13
(
2016
).
17.
P.
Billingsley
, “
Statistical methods in Markov chains
,”
Ann. Math. Stat.
32
,
12
40
(
1961
).
18.
P. G.
Hoel
, “
A test for Markoff chains
,”
Biometrika
41
(
3/4
),
430
433
(
1954
).
19.
M. J.
Van der Heyden
,
C. G.
Diks
,
B. P.
Hoekstra
, and
J.
DeGoede
, “
Testing the order of discrete Markov chains using surrogate data
,”
Phys. D: Nonlinear Phenom.
117
(
1–4
),
299
313
(
1998
).
20.
N.
Marwan
,
N.
Wessel
,
U.
Meyerfeldt
,
A.
Schirdewan
, and
J.
Kurths
, “
Recurrence-plot-based measures of complexity and their application to heart-rate-variability data
,”
Phys. Rev. E
66
(
2
),
026702
(
2002
).
21.
M.
Fukino
,
Y.
Hirata
, and
K.
Aihara
, “
Coarse-graining time series data: Recurrence plot of recurrence plots and its application for music
,”
Chaos Interdiscip. J. Nonlinear Sci.
26
(
2
),
023116
(
2016
).
22.
J.
Serra
,
X.
Serra
, and
R. G.
Andrzejak
, “
Cross recurrence quantification for cover song identification
,”
New J. Phys.
11
(
9
),
093017
(
2009
).
23.
M.
Dirst
, and
A. S.
Weigend
, “On completing J. S. Bach’s last fugue,” in
Time Series Prediction: Forecasting the Future and Understanding the Past
, edited by
A. S.
Weigend
and
N. A.
Gershenfeld
(
Addison-Wesley
,
1993
), pp.
151
177
.
24.
T. O.
Johnson
,
An Analytical Survey of the Fifteen Two-Part Inventions by J. S. Bach
(
University Press of America
,
1982
).
25.
L.
Dreyfus
,
Bach and the Patterns of Invention
(
Harvard University Press
,
1996
).
26.
D. B.
Huron
,
Sweet Anticipation: Music and the Psychology of Expectation
(
MIT Press
,
2006
).
27.
M.
McCullough
,
K.
Sakellariou
,
T.
Stemler
, and
M.
Small
, “
Regenerating time series from ordinal networks
,”
Chaos Interdiscip. J. Nonlinear Sci.
27
(
3
),
035814
(
2017
).
28.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
(
2
),
130
141
(
1963
).
29.
A. S.
Campanharo
,
M. I.
Sirer
,
R. D.
Malmgren
,
F. M.
Ramos
, and
L. A. N.
Amaral
, “
Duality between time series and networks
,”
PLoS One
6
(
8
),
e23378
(
2011
).
30.
L.
Hou
,
M.
Small
, and
S.
Lao
, “
Dynamical systems induced on networks constructed from time series
,”
Entropy
17
(
9
),
6433
6446
(
2015
).
31.
L. B.
Meyer
,
Emotion and Meaning in Music
(
University of Chicago Press
,
1956
).
32.
C. E.
Shannon
, and
W.
Weaver
,
The Mathematical Theory of Communication
(
University of Illinois Press
,
1964
).
33.
A.
Papoulis
, and
S. U.
Pillai
,
Probability, Random Variables, and Stochastic Processes
(
Tata McGraw-Hill Education
,
2002
).
34.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
(
5
),
237
329
(
2007
).
35.
J.-P.
Eckmann
,
S. O.
Kamphorst
, and
D.
Ruelle
, “
Recurrence plots of dynamical systems
,”
Europhys. Lett.
4
(
9
),
973
(
1987
).
36.
J. P.
Zbilut
, and
C. L.
Webber
, “
Embeddings and delays as derived from quantification of recurrence plots
,”
Phys. Lett. A
171
(
3-4
),
199
203
(
1992
).
37.
R. V.
Donner
,
M.
Small
,
J. F.
Donges
,
N.
Marwan
,
Y.
Zou
,
R.
Xiang
, and
J.
Kurths
, “
Recurrence-based time series analysis by means of complex network methods
,”
Int. J. Bifurcat. Chaos
21
(
04
),
1019
1046
(
2011
).
38.
A.
Krishnan
,
A.
Giuliani
,
J. P.
Zbilut
, and
M.
Tomita
, “
Implications from a network-based topological analysis of ubiquitin unfolding simulations
,”
PLoS One
3
(
5
),
e2149
(
2008
).
39.
M.
Boyd
,
Bach
(
Oxford University Press
,
2000
).
40.
See http://imslp.org for “
International Music Score Library Project (IMSLP): Petrucci Music Library
” (last accessed December
2017
).
41.
T.
Eerola
, and
P.
Toiviainen
, “
MIR in MATLAB: The MIDI toolbox
,” in
Proceedings of the 5th International Conference on Music Information Retrieval
(Universitat Pompeu Fabra,
2004
), pp.
22
27
.
42.
M.
Hewitt
,
Music Theory for Computer Musicians
(
Nelson Education
,
2008
).
43.
B.
Sericola
,
Markov Chains: Theory and Applications
(
John Wiley & Sons
,
2013
).
44.
J.
Theiler
, and
D.
Prichard
, “
Constrained-realization Monte-Carlo method for hypothesis testing
,”
Phys. D: Nonlinear Phenom.
94
(
4
),
221
235
(
1996
).
45.
M.
Bastian
,
S.
Heymann
, and
M.
Jacomy
, “
Gephi: An open source software for exploring and manipulating networks
,” in
Proceedings of the Third International ICWSM Conference
(AAAI Press, Menlo Park, CA,
2009
), pp.
361
362
.
You do not currently have access to this content.