Smart home has been widely used to improve the living quality of people. Recently, the brain-computer interface (BCI) contributes greatly to the smart home system. We design a BCI-based smart home system, in which the event-related potentials (ERP) are induced by the image interface based on the oddball paradigm. Then, we investigate the influence of mental fatigue on the ERP classification by the Fisher linear discriminant analysis. The results indicate that the classification accuracy of ERP decreases as the brain evolves from the normal stage to the mental fatigue stage. In order to probe into the difference of the brain, cognitive process between mental fatigue and normal states, we construct multivariate weighted recurrence networks and analyze the variation of the weighted clustering coefficient and weighted global efficiency corresponding to these two brain states. The findings suggest that these two network metrics allow distinguishing normal and mental fatigue states and yield novel insights into the brain fatigue behavior resulting from a long use of the ERP-based smart home system. These properties render the multivariate recurrence network, particularly useful for analyzing electroencephalographic recordings from the ERP-based smart home system.

1.
C.
Wilson
,
T.
Hargreaves
, and
R.
Hauxwell-Baldwin
, “
Smart homes and their users: A systematic analysis and key challenges
,”
Pers. Ubiquitous Comput.
19
(
2
),
463
476
(
2015
).
2.
G.
Edlinger
,
R.
Prueckl
,
G.
Krausz
,
G.
Holzner
, and
C.
Guger
, “
P4-24 P300 and SSVEP based brain-computer interface for control of a smart home virtual environment
,”
Clin. Neurophysiol.
121
(
10
),
S126
(
2010
).
3.
M.
Li
,
W.
Li
, and
H.
Zhou
, “
Increasing N200 potentials via visual stimulus depicting humanoid robot behavior
,”
Int. J. Neural. Syst.
26
(
1
),
1550039
(
2016
).
4.
M.
Li
,
W.
Li
,
L.
Niu
,
H.
Zhou
,
G.
Chen
, and
F.
Duan
, “
An event-related potential-based adaptive model for telepresence control of humanoid robot motion in an environment with cluttered obstacles
,”
IEEE Trans. Ind. Electron.
64
(
2
),
1696
1705
(
2017
).
5.
S. H.
Patel
and
P. N.
Azzam
, “
Characterization of N200 and P300: Selected studies of the event-related potential
,”
Int. J. Med. Sci.
2
(
4
),
147
154
(
2005
).
6.
R.
Carabalona
,
F.
Grossi
,
A.
Tessadri
,
P.
Castiqioni
,
P.
Castiglioni
, and
L. D.
Munari
, “
Light on! Real world evaluation of a P300-based brain-computer interface (BCI) for environment control in a smart home
,”
Ergonomics
55
(
5
),
552
564
(
2012
).
7.
E. M.
Mugler
,
C. A.
Ruf
,
S.
Halder
,
M.
Bensch
, and
A.
Kübler
, “
Design and implementation of a P300-based brain-computer interface for controlling an internet browser
,”
IEEE Trans. Neur. Sys. Reh.
18
(
6
),
599
609
(
2010
).
8.
M.
Li
,
W.
Li
,
J.
Zhao
,
Q.
Meng
,
M.
Zeng
, and
G.
Chen
, “
A P300 model for Cerebot-A mind-controlled humanoid robot
,”
Robot Intell. Technol. Appl.
274
,
495
502
(
2014
).
9.
H. A.
Lamti
,
P.
Gorce
,
M. M.
Ben. Khelifa
, and
A. M.
Alimi
, “
When mental fatigue maybe characterized by Event Related Potential (P300) during virtual wheelchair navigation
,”
Comput. Methods Biomech. Biomed. Eng.
19
(
16
),
1749
1759
(
2016
).
10.
K.
Nataliya
,
T. B.
Franck
,
B.
Nicolas
, and
B.
Rivet
, “
Feasibility of BCI control in a realistic smart home environment
,”
Front. Hum. Neurosci.
10
,
416
(
2016
).
11.
C.
Holzner
,
C.
Guger
,
C.
Grönegress
, and
M.
Slater
, “
Using a P300 brain computer interface for smart home control
,”
IFMBE Proc.
25
(
9
),
174
177
(
2009
).
12.
S.
Lal
and
A.
Craig
, “
A critical review of the psychophysiology of driver fatigue
,”
Biol. Psychol.
55
(
3
),
173
194
(
2001
).
13.
S.
Yang
,
Y.
Qiao
,
L.
Wang
, and
P.
Hao
, “
Magnetic stimulation at acupoints relieves mental fatigue: An Event Related Potential (P300) study
,”
Technol. Health Care
25
,
157
165
(
2017
).
14.
M. E. J.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
(
2
),
167
256
(
2003
).
15.
N.
Boers
,
R. V.
Donner
,
B.
Bookhagen
, and
J.
Kurths
, “
Complex network analysis helps to identify impacts of the El Niño Southern Oscillation on moisture divergence in South America
,”
Clim. Dynam.
45
(
3–4
),
1
14
(
2014
).
16.
W.
Zou
,
D. V.
Senthilkumar
,
R.
Nagao
,
I. Z.
Kiss
,
Y.
Tang
,
A.
Koseska
,
J. Q.
Duan
, and
J.
Kurths
, “
Restoration of rhythmicity in diffusively coupled dynamical networks
,”
Nat. Commun.
6
,
7709
(
2015
).
17.
Z. G.
Huang
,
J. Q.
Dong
,
L.
Huang
, and
Y. C.
Lai
, “
Universal flux-fluctuation law in small systems
,”
Sci. Rep.
4
,
6787
(
2014
).
18.
L. R.
Turci
and
E. E. N.
Macau
, “
Hybrid pinning control for complex network
,”
Int. J. Bifurcation Chaos
22
(
10
),
1512
2973
(
2012
).
19.
M. G.
Quiles
,
E. E. N.
Macau
, and
N.
Rubido
, “
Dynamical detection of network communities
,”
Sci. Rep.
6
,
25570
(
2016
).
20.
F. A. S.
Ferrari
,
R. L.
Viana
,
F.
Gomez
,
T.
Lorimer
, and
R.
Stoop
, “
Macroscopic bursting in physiological networks: Node or network property
,”
New J. Phys.
17
(
5
),
55024
(
2015
).
21.
E. L.
Lameu
,
F. S.
Borges
,
R. R.
Borges
,
K. C.
Iarosz
,
I. L.
Caldas
,
A. M.
 
Batista
,
R. L.
Viana
, and
J.
Kurths
, “
Suppression of phase synchronisation in network based on cat’s brain
,”
Chaos
26
(
4
),
043107
(
2016
).
22.
N.
Molkenthin
,
K.
Rehfeld
,
N.
Marwan
, and
J.
Kurths
, “
Networks from flows-from dynamics to topology
,”
Sci. Rep.
4
(
7
),
4119
(
2014
).
23.
J.
Zhang
,
W.
Cheng
,
Z. W.
Liu
,
K.
Zhang
,
X.
Lei
,
Y.
Yao
,
B.
Becker
,
Y. C.
 
Liu
,
K. M.
Kendrick
,
G. M.
Lu
, and
J. F.
Feng
, “
Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders
,”
Brain
139
(
8
),
2307
(
2016
).
24.
Z. K.
Gao
,
Y. X.
Yang
,
Q.
Cai
,
S. S.
Zhang
, and
N. D.
Jin
, “
Multivariate weighted recurrence network inference for uncovering oil-water transitional flow behavior in a vertical pipe
,”
Chaos
26
(
6
),
063117
(
2016
).
25.
J.
Zhang
and
M.
Small
, “
Complex network from pseudoperiodic time series: Topology versus dynamics
,”
Phys. Rev. Lett.
96
(
23
),
238701
(
2006
).
26.
L.
Lacasa
,
B.
Luque
,
F.
Ballesteros
,
J.
Luque
, and
J. C.
Nuno
, “
From time series to complex networks: The visibility graph
,”
Proc. Natl. Acad. Sci. U.S.A.
105
(
13
),
4972
4975
(
2008
).
27.
X. K.
Xu
,
J.
Zhang
, and
M.
Small
, “
Superfamily phenomena and motifs of networks induced from time series
,”
Proc. Natl. Acad. Sci. U.S.A.
105
(
50
),
19601
19605
(
2008
).
28.
Z. K.
Gao
,
W. D.
Dang
,
C. X.
Mu
,
Y. X.
Yang
,
S.
Li
, and
C.
Grebogi
, “
A novel multiplex network-based sensor information fusion model and its application to industrial multiphase low system
,”
IEEE Trans. Ind. Inf.
(
2017)
.
29.
J. F.
Donges
,
R. V.
Donner
,
M. H.
Trauth
,
N.
Marwan
,
H. J.
Schellnhuber
, and
J.
Kurths
, “
Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution
,”
Proc. Natl. Acad. Sci. U.S.A.
108
(
51
),
20422
20427
(
2011
).
30.
Z. K.
Gao
,
Y. X.
Yang
,
P. C.
Fang
,
Y.
Zou
,
C. Y.
Xia
, and
M.
Du
, “
Multiscale complex network for analyzing experimental multivariate time series
,”
Europhys. Lett.
109
(
3
),
30005
(
2015
).
31.
Z. K.
Gao
,
Q.
Cai
,
Y. X.
Yang
,
W. D.
Dang
, and
S. S.
Zhang
, “
Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series
,”
Sci. Rep.
6
,
35622
(
2016
).
32.
Z. K.
Gao
,
S.
Li
,
W. D.
Dang
,
Y. X.
Yang
,
Y.
Do
, and
C.
Grebogi
, “
Wavelet multiresolution complex network for analyzing multivariate nonlinear time series
,”
Int. J. Bifurcation Chaos
27
(
8
),
1750123
(
2017
).
33.
Z. K.
Gao
,
S. S.
Zhang
,
W. D.
Dang
,
S.
Li
, and
Q.
Cai
, “
Multilayer network from multivariate time series for characterizing nonlinear flow behavior
,”
Int. J. Bifurcation Chaos
27
(
4
),
1750059
(
2017
).
34.
Y.
Zou
,
R. V.
Donner
,
N.
Marwan
,
M.
Small
, and
J.
Kurths
, “
Long-term changes in the north-south asymmetry of solar activity: A nonlinear dynamics characterization using visibility graphs
,”
Nonlinear Proc. Geophys.
1
(
1
),
1113
1126
(
2014
).
35.
Z. K.
Gao
,
Q.
Cai
,
Y. X.
Yang
,
N.
Dong
, and
S. S.
Zhang
, “
Visibility graph from adaptive optimal kernel time-frequency representation for classification of epileptiform EEG
,”
Int. J. Neural. Syst.
27
(
4
),
1750005
(
2017
).
36.
N.
Marwan
,
J. F.
Donges
,
Y.
Zou
,
R. V.
Donner
, and
J.
Kurths
, “
Complex network approach for recurrence analysis of time series
,”
Phys. Lett. A
373
(
46
),
4246
4254
(
2009
).
37.
J. H.
Feldhoff
,
R. V.
Donner
,
J. F.
Donges
,
N.
Marwan
, and
J.
Kurths
, “
Geometric detection of coupling directions by means of inter-system recurrence networks
,”
Phys. Lett. A
376
(
46
) (
2012
).
38.
R. V.
Donner
,
Y.
Zou
,
J. F.
Donges
,
N.
Marwan
, and
J.
Kurths
, “
Recurrence networks-a novel paradigm for nonlinear time series analysis
,”
New J. Phys.
12
(
3
),
129
132
(
2009
).
39.
J. F.
Donges
,
J.
Heitzig
,
R. V.
Donner
, and
J.
Kurths
, “
Analytical framework for recurrence network analysis of time series
,”
Phys. Rev. E
85
(
4
),
046105
(
2012
).
40.
R. X.
Xiang
,
J.
Zhang
,
X. K.
Xu
, and
M.
Small
, “
Multiscale characterization of recurrence-based phase space networks constructed from time series
,”
Chaos
22
(
1
),
013107
(
2012
).
41.
Z. K.
Gao
,
X. W.
Zhang
,
N. D.
Jin
,
R. V.
Donner
,
N.
Marwan
, and
J.
 
Kurths
, “
Recurrence networks from multivariate signals for uncovering dynamic transitions of horizontal oil-water stratified flows
,”
Europhys. Lett.
103
(
5
),
50004
(
2013
).
42.
Z. K.
Gao
,
X. W.
Zhang
,
N. D.
Jin
,
N.
Marwan
, and
J.
Kurths
, “
Multivariate recurrence network analysis for characterizing horizontal oil-water two-phase flow
,”
Phys. Rev. E
88
(
3
),
032910
(
2013
).
43.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
(
5–6
),
237
(
2007
).
44.
G.
Litak
and
R.
Rusinek
, “
Dynamics of a stainless steel turning process by statistical and recurrence analyses
,”
Meccanica
47
(
6
),
1517
1526
(
2012
).
45.
C. L.
Webber
 Jr.
, and
J. P.
Zbilut
, “
Recurrence quantifications: Feature extractions from recurrence plots
,”
Int. J. Bifurcation Chaos
17
(
10
),
3467
3475
(
2007
).
46.
A.
Syta
,
J.
Jonak
,
L.
Jedlinski
, and
G.
Litak
, “
Failure diagnosis of a gear box by recurrences
,”
J. Vib. Acoust.
134
(
4
),
1313
1320
(
2012
).
47.
J. P.
Zbilut
,
P.
Sirabella
,
A.
Giuliani
,
C.
Manetti
,
A.
Colosimo
, and
C. L.
Webber
, Jr.
, “
Review of nonlinear analysis of proteins through recurrence quantification
,”
Cell Biochem. Biophys.
36
(
1
),
67
87
(
2002
).
48.
G.
Litak
,
G.
Gorski
,
R.
Mosdorf
, and
A.
Rysak
, “
Study of dynamics of two-phase flow through a minichannel by means of recurrences
,”
Mech. Syst. Signal Proc.
89
,
48
57
(
2017
).
49.
S.
Carrubba
,
C.
Frilot
,
A. L.
Chesson
, Jr.
,
C. L.
Webber
, Jr.
,
J. P.
Zbilut
, and
A. A.
Marino
, “
Magnetosensory evoked potentials: Consistent nonlinear phenomena
,”
Neurosci. Res.
60
(
1
),
95
105
(
2008
).
50.
T. L.
Prado
,
P. P.
Galuzio
,
S. R.
Lopes
, and
R. L.
Viana
, “
Spatial recurrence analysis: A sensitive and fast detector tool in digital mammography
,”
Chaos
24
(
1
),
013106
(
2014
).
51.
Z. K.
Gao
,
M.
Small
, and
J.
Kurths
, “
Complex network analysis of time series
,”
Europhys. Lett.
116
(
5
),
50001
(
2016
).
52.
S.
Mika
,
G.
Ratsch
,
J.
Weston
,
B.
Schölkopf
, and
K. R.
Müller
, “
Fisher discriminant analysis with kernels
,”
IEEE Signal Process. Soc. Workshop
9
,
41
48
(
1999
).
53.
M. C.
Romano
,
M.
Thiel
,
J.
Kurths
, and
W. V.
Bloh
, “
Multivariate recurrence plots
,”
Phys. Lett. A
330
(
3
),
214
223
(
2004
).
54.
M. B.
Kennel
,
R.
Brown
, and
H. D.
Abarbanel
, “
Determining embedding dimension for phase-space reconstruction using a geometrical construction
,”
Phys. Rev. A
45
(
6
),
3403
(
1992
).
55.
H. S.
Kim
,
R.
Eykholt
, and
J. D.
Salas
, “
Nonlinear dynamics, delay times, and embedding windows
,”
Phys. D
127
(
1–2
),
48
60
(
1999
).
56.
M.
Rubinov
and
O.
Sporns
, “
Complex network measures of brain connectivity: Uses and interpretations
,”
Neuroimage
52
(
3
),
1059
1069
(
2010
).
57.
C.
Zhao
,
M.
Zhao
,
Y.
Yang
,
J. F.
Gao
,
N. N.
Rao
, and
P.
Lin
, “
The reorganization of human brain networks modulated by driving mental fatigue
,”
IEEE J. Biomed. Health Inf.
21
(
3
),
743
755
(
2016
).
58.
A.
Sengupta
,
A.
Routray
, and
S.
Kar
, “
Estimation of fatigue in drivers by analysis of brain networks
,”
Emerg. Appl. Inf. Technol.
14
,
289
293
(
2014
).
You do not currently have access to this content.