Recurrence plots (RPs) have proved to be a very versatile tool to analyze temporal dynamics of time series data. However, it has also been conjectured that RPs can be used to model samples of random variables, that is, data that do not contain any temporal dependencies. In the current paper, we show that RPs can indeed be used to mimic nonparametric inferential statistics. Particularly, we use the case of the two-sample Kolmogorov-Smirnov test as a proof-of-concept, showing how such a test can be done based on RPs. Simulations on differences in mean, variance, and shape of two distributions show that the results of the classical two-sample Kolmogorov-Smirnov test and the recurrence-based test for differences in distributions of two independent samples scale well with each other. While the Kolmogorov-Smirnov test seems to be more sensitive in detecting differences in means, the recurrence based test seems to be more sensitive to detect heteroscedasticity and asymmetry. Potential improvements of our approach as well as extensions to tests with individual distributions are discussed.

1.
C. L. J.
Webber
and
J. P.
Zbilut
,
J. Appl. Physiol.
76
,
965
(
1994
).
2.
J. P.
Zbilut
and
C. L. J.
Webber
,
Phys. Lett. A
171
,
199
(
1992
).
3.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
,
Phys. Rep.
438
,
237
(
2007
).
4.
C. L. J.
Webber
and
N.
Marwan
,
Recurrence Quantifcation Analysis: Theory and Best Practices
(
Springer
,
Cham
,
2015
).
5.
J.-P.
Eckmann
,
S. O.
Kamphorst
, and
D.
Ruelle
,
Europhys. Lett.
4
,
973
(
1987
).
6.
C. L. J.
Webber
and
J. P.
Zbilut
, in
Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences
, edited by
M. A.
Riley
and
G. C.
Van Orden
(
NSF
,
2005
), pp.
26
94
.
7.
J. P.
Zbilut
and
N.
Marwan
,
Phys. Lett. A
372
,
6622
(
2008
).
8.
C. L. J.
Webber
,
M. A.
Schmidt
, and
J. M.
Walsh
,
J. Appl. Physiol.
78
,
814
(
1995
).
9.
A.
Kolmogorov
,
G. Dell’Istituto Ital. Degli Attuari
4
,
83
(
1933
).
10.
N. V.
Smirnov
,
Bull. Math. Univ. Moscou
2
,
3
(
1939
).
11.
I. M.
Chakravarti
,
R. G.
Laha
, and
J.
Roy
,
Handbook of Methods of Applied Statistics
(
John Wiley & Sons
,
New York
,
1967
).
12.
F.
Takens
, in
Dynamical Systems and Turbulence Warwick 1980
, edited by
D.
Rand
and
L.-S.
Young
(
Springer
,
Berlin
,
1981
), pp.
366
381
.
13.
R.
Mañé
, in
Dynamical Systems and Turbulence Warwick 1980
, edited by
D.
Rand
and
L.-S.
Young
(
Springer
,
Berlin
,
1981
), pp.
230
242
.
14.
W.
Feller
,
Ann. Math. Stat.
19
,
177
(
1948
).
15.
P. E.
Rapp
,
D. M.
Darmon
, and
C. J.
Cellucci
,
IEICE Proc. Ser.
2
,
286
(
2014
).
16.
A.
Azzalini
and
A.
Capitanio
,
The Skew-Normal and Related Families
(
Cambridge University Press
,
Cambridge
,
2014
).

Supplementary Material

You do not currently have access to this content.