Worldwide, mineral exploration is suffering from rising capital costs, due to the depletion of readily recoverable reserves and the need to discover and assess more inaccessible or geologically complex deposits. For gold exploration, this problem is particularly acute. We propose an innovative approach to mineral exploration and orebody characterisation, based on the analysis of geological core data as a spatial dynamical system, using the mathematical tools of dynamical system analysis. This approach is highly relevant for orogenic gold deposits, which—in contrast to systems formed at chemical equilibrium—exhibit many features of nonlinear dynamical systems, including episodic fluctuations on various length and time scales. Feedback relationships between thermo-chemical and deformation processes produce recurrent fluid temperatures and pressures and the deposition of vein-filling minerals such as pyrite and gold. We therefore relax the typical assumption of chemical equilibrium and analyse the underlying processes as aseismic, non-adiabatic, and inherent to a hydrothermal, nonlinear dynamical open-flow chemical reactor. These processes are approximated using the Gray-Scott model of reaction-diffusion as a complex toy system, which captures some of the features of the underlying mineralisation processes, including the spatiotemporal Turing patterns of unsteady chemical reactions. By use of this analysis, we demonstrate the capability of recurrence plots, recurrence power spectra, and recurrence time probabilities to detect underlying unstable periodic orbits as one sign of deterministic dynamics and their robustness for the analysis of data contaminated by noise. Recurrence plot based quantification is then applied to three mineral concentrations in the core data from the Sunrise Dam gold deposit in the Yilgarn region of Western Australia. Using a moving window, we reveal the episodic recurring low-dimensional dynamic structures and the period doubling route to instability with depth, embedded in and originating from higher-dimensional processes of the complex mineralisation system.

1.
A.
Bialowas
, “
The exploration challenge (June 2017)
,”
Tech. Rep.
(
Minerals Council of Australia
,
2017
).
2.
G.
Calvo
,
G.
Mudd
,
A.
Valero
, and
A.
Valero
, “
Decreasing ore grades in global metallic mining: A theoretical issue or a global reality?
,”
Resources
5
,
36
(
2016
).
3.
A.
Ord
,
S.
Oberst
,
R.
Niven
, and
B.
Hobbs
, “
What do we do with all this data? Ore exploration using modern technology
,” in
Gold17@Rotorua, Rotorua, New Zealand, 21–23 February 2017
(
Australian Institute of Geoscientists
,
2017
).
4.
B.
Hobbs
,
A.
Ord
, and
K.
Regenauer-Lieb
, “
The thermodynamics of deformed metmorphic rocks: A review
,”
J. Struct. Geol.
33
,
758
818
(
2011
).
5.
A.
Ord
,
B.
Hobbs
, and
D.
Lester
, “
The mechanics of hydrothermal systems: I. Ore systems as chemical reactors
,”
Ore Geol. Rev.
49
,
1
44
(
2012
).
6.
B.
Hobbs
,
S.
Oberst
,
R.
Niven
, and
A.
Ord
, “
Mineralising systems as nonlinear dynamical systems
,” in
Gold17@Rotorua, Rotorua, New Zealand, 21–23 February 2017
, edited by
D.
Brett
,
T.
Christie
,
L.
Gonzales
,
W.
Spilsbury
, and
J.
Vearncombe
(
Australian Institute of Geoscientists
,
2017
).
7.
M.
Cross
and
H.
Greenside
,
Pattern Formation and Dynamics in Nonequilibrium Systems
(
Cambridge University Press
,
2009
).
8.
S.
Oberst
,
S.
Marburg
, and
N.
Hoffmann
, “
Determining periodic orbits via nonlinear filtering and recurrence spectra in the presence of noise
,”
Procedia Eng.
199
,
772
777
(
2017
).
9.
H. G.
Schuster
and
W.
Just
,
Deterministic Chaos
(
Wiley-VCH
,
2005
).
10.
P.
Gaspard
, “
Nonequilibrium nanosystems
,” in
Nonlinear Dynamics of Nanosystems
, edited by
G.
Radons
,
B.
Rumpf
, and
H. G.
Schuster
(
Wiley-VCH
,
Weinheim
,
2010
).
11.
L.
Arnold
,
Random Dynamical Systems
(
Springer-Verlag
,
Berlin
,
1998
).
12.
V.
Anishchenko
,
V.
Astakhov
,
A.
Neiman
,
T.
Vadivasova
, and
L.
Schimansky-Geier
,
Nonlinear Dynamics of Chaotic and Stochastic Systems
(
Springer-Verlag
,
Berlin
,
2007
).
13.
D.
Lester
,
A.
Ord
, and
B.
Hobbs
, “
The mechanics of hydrothermal systems: II. Fluid mixing and chemical reactions
,”
Ore Geol. Rev.
49
,
45
71
(
2012
).
14.
A.
Ord
,
M.
Munro
, and
B.
Hobbs
, “
Hydrothermal mineralising systems as chemical reactors: Wavelet analysis, multifractals and correlations
,”
Ore Geol. Rev.
79
,
155
179
(
2016
).
15.
S.
Oberst
,
R.
Niven
,
A.
Ord
,
B.
Hobbs
, and
D.
Lester
, “
Application of recurrence plots to orebody exploration data
,” in Target 2017, Innovating now for our future, Uniclub, University of Western Australia, Perth, Australia, 19–21 April (
2017
).
16.
D.
Lynch
,
T.
Rogers
, and
S.
Wanke
, “
Chaos in a continuous stirred tank reactor
,”
Math. Model.
3
,
103
116
(
1982
).
17.
J.
Vastano
,
J.
Pearson
,
W.
Horsthemke
, and
H.
Swinney
, “
Chemical pattern formation with equal diffusion coefficients
,”
Phys. Lett. A
124
,
320
324
(
1987
).
18.
M.
Stich
,
G.
Ghoshal
, and
J.
Paurez-Mercader
, “
Parametric pattern selection in a reaction-diffusion model
,”
PLoS One
8
,
1
6
(
2013
).
19.
J.
McGough
and
K.
Riley
, “
Pattern formation in the gray-scott model
,”
Nonlinear Anal. Real World Appl.
5
,
105
121
(
2004
).
20.
P.
Gray
and
S.
Scott
,
Chemical Oscillations and Instabilities
(
Oxford University Press
,
Oxford
,
1990
).
21.
R.
Henley
and
B.
Berger
, “
Self-ordering and complexity in epizonal mineral deposits
,”
Ann. Rev. Earth Planet. Sci.
28
,
669
719
(
2000
).
22.
Nonlinearity and Chaos in Engineering Dynamics
, 2nd ed., edited by
J.
Thompson
and
S.
Bishop
(
John Wiley & Sons Ltd.
,
New York
,
2002
).
23.
G.
Kerschen
,
K.
Worden
,
A. F.
Vakakis
, and
J. C.
Golinval
, “
Past, present and future of nonlinear system identification in structural mechanics
,”
Mech. Syst. Signal Process.
20
,
505
592
(
2006
).
24.
K.
Worden
,
C. R.
Farrar
,
J.
Haywood
, and
M.
Todd
, “
A review of nonlinear dynamics applications to structural health monitoring
,”
Struct. Control Health Monit.
15
,
540
567
(
2008
).
25.
S.
Oberst
and
J.
Lai
, “
Nonlinear transient and chaotic interactions in disc brake squeal
,”
J. Sound Vib.
342
,
272
289
(
2015
).
26.
M.
Riedl
,
N.
Marwan
, and
J.
Kurths
, “
Multiscale recurrence analysis of spatio-temporal data
,”
Chaos
25
,
123111
(
2015
).
27.
Physical assemblages of alteration minerals due to metasomatism. Metasomatism substitutes chemically the original rock mineral phases with new phases, which is facilitated by fluid flux associated with chemical reactants aqueous product removal.70
28.
J.-P.
Eckmann
,
S.
Oliffson Kamphorst
, and
D.
Ruelle
, “
Recurrence plots of dynamical systems
,”
Europhys. Lett.
4
,
973
977
(
1987
).
29.
J.
Zaldivar
,
F.
Strozzi
,
S.
Dueri
,
D.
Marinov
, and
J.
Zbilut
, “
Characterization of regime shifts in environmental time series with recurrence quantification analysis
,”
Ecol. Modell.
210
,
58
70
(
2008
).
30.
G.-F.
Fan
,
L.-L.
Peng
,
W.-C.
Hong
, and
F.
Sun
, “
Kinetics for reduction of iron ore based on the phase space reconstruction
,”
J. Appl. Math.
514851
,
1
10
(
2014
).
31.
D.
Eroglu
,
N.
Marwan
,
S.
Prasad
, and
J.
Kurths
, “
Finding recurrence networks’ threshold adaptively for a specific time series
,”
Nonlinear Process. Geophys.
21
,
1085
1092
(
2014
).
32.
G.
Filligoi
and
F.
Felici
, “
Detection of hidden rhythms in surface {EMG} signals with a non-linear time-series tool
,”
Med. Eng. Phys.
21
,
439
448
(
1999
).
33.
K.
Guhathakurta
,
B.
Bhattacharya
, and
A.
Chowdhurya
, “
Using recurrence plot analysis to distinguish between endogenous and exogenous stock market crashes
,”
Physica A
389
,
1874
1882
(
2010
).
34.
S.
Oberst
and
J.
Lai
, “
Chaos in brake squeal noise
,”
J. Sound Vib.
330
,
955
975
(
2011
).
35.
B. A.
Wernitz
and
N. P.
Hoffmann
, “
Recurrence analysis and phase space reconstruction of irregular vibration in friction brakes: Signatures of chaos in steady sliding
,”
J. Sound Vib.
331
,
3887
3896
(
2012
).
36.
C.
Goldfinger
,
C.
Nelson
, and
J.
Johnson
, “
Holocene earthquake records from the Cascadia subduction zone and northern San Andreas fault based on precise dating of offshore turbidites
,”
Ann. Rev. Earth Planet. Sci.
31
,
555
577
(
2003
).
37.
E.
Bradley
and
R.
Mantilla
, “
Recurrence plots and unstable periodic orbits
,”
Chaos
12
,
596
600
(
2003
).
38.
I.
Berenstein
and
J.
Carballido-Landeira
, “
Spatiotemporal chaos involving wave instability
,”
Chaos
27
,
013116
(
2017
).
39.
R.
Gilmore
and
M.
Lefranc
,
Topology Analysis of Chaos
(
Wiley VCH Verlagsgesellschaft
,
2002
).
40.
J.
Zbilut
and
N.
Marwan
, “
The Wiener-Khinchin theorem and recurrence quantification
,”
Phys. Lett. A
372
,
6622
6626
(
2007
).
41.
P.
Maini
,
K.
Painter
, and
H.
. Chau
, “
Spatial pattern formation in chemical and biological systems
,”
J. Chem. Soc. Faraday Trans.
93
,
3601
3610
(
1997
).
42.
C.
Mocenni
,
A.
Facchini
, and
A.
Vicino
, “
Identifying the dynamics of complex spatio-temporal systems by spatial recurrence properties
,”
Proc. Nat. Acad. Sci. USA
107
,
8097
8102
(
2010
).
43.
A.
Turing
, “
The chemical basis of morphogenesis
,”
Philos. Trans. R. Soc. Lond. B Biol. Sci.
237
,
37
72
(
1952
).
44.
D. I.
Groves
, “
The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia
,”
Miner. Depos.
28
,
366
374
(
1993
).
45.
D.
Morgan
,
A.
Doelman
, and
T.
Kaper
, “
Stationary periodic pattern in the 1d Gray-Scott model
,”
Methods Appl. Anal.
7
,
105
150
(
2000
).
46.
A.
Spanos
,
Probability Theory and Statistical Inference
(
Cambridge University Press
,
UK
,
1999
).
47.
S.
Oberst
and
J.
Lai
, “
A statistical approach to estimate the Lyapunov spectrum in disc brake squeal
,”
J. Sound Vib.
334
,
120
135
(
2015
).
48.
A.
Tomkins
, “
On the source of orogenic gold
,”
Geology
41
,
1255
1256
(
2013
).
49.
Y.
Zhu
,
F.
An
, and
J.
Tan
, “
Geochemistry of hydrothermal gold deposits: A review
,”
Geosci. Front.
2
,
367
374
(
2011
).
50.
V.
Winschel
and
M.
Krätzig
, “
Solving, estimating, and selecting nonlinear dynamic models without the curse of dimensionality
,”
Econometrica
78
,
803
821
(
2010
).
51.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
2004
).
52.
F.
Takens
, “
Detecting strange attractors in turbulence
,” in
Dynamical Systems and Turbulence
, Lecture Notes in Mathematics Vol. 898 (
Springer Nature, Switzerland
,
1981
), pp.
366
381
.
53.
H. D. I.
Abarbanel
,
Analysis of Observed Chaotic Data
(
Springer
,
New York
,
1996
).
54.
N.
Marwan
,
M.
Carmen Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
,
237
329
(
2007
).
55.
A. M.
Fraser
and
H. L.
Swinney
, “
Independent coordinates for strange attractors from mutual information
,”
Phys. Rev. A
33
,
1134
1140
(
1986
).
56.
R.
Hegger
and
H.
Kantz
, “
Practical implementation of nonlinear time series methods: The TISEAN package
,”
Chaos
9
,
413
435
(
1999
).
57.
R.
Donner
,
Y.
Zou
,
N.
Donges
,
J. F.
Marwan
, and
J.
Kurths
, “
Recurrence networks-a novel paradigm for nonlinear time series analysis
,”
New J. Phys.
12
,
033025
(
2010
).
58.
N.
Marwan
and
J.
Kurths
, “
Nonlinear analysis of bivariate data with cross-recurrence plots
,”
Phys. Lett. A
302
,
299
307
(
2002
).
59.
E.
Ngamga
,
D.
Senthilkumar
,
A.
Prasad
,
P.
Parmananda
,
J.
Marwan
, and
N.
Kurths
, “
Distinguishing dynamics using recurrence-time statistics
,”
Phys. Rev. E
85
,
026217
(
2012
).
60.
R.
Randall
,
Frequency Analysis
(
Bruel & Kjaer
,
Copenhagen
,
1987
).
61.
S.
Oberst
,
J. C. S.
Lai
, and
T. A.
Evans
, “
An innovative signal processing technique for the extraction of ants’ walking signals
,”
Acoust. Aust.
43
(
1
),
87
96
(
2015
).
62.
G.
Phillips
and
R.
Powell
, “
Formation of gold deposits: Review and evaluation of the continuum model
,”
Earth Sci. Rev.
94
,
1
21
(
2009
).
63.
M.
Thiel
,
M. C.
Romano
,
J.
Kurths
,
R.
Meucci
,
E.
Allaria
, and
F. T.
Arecchi
, “
Influence of observational noise on the recurrence quantification analysis
,”
Physica D
171
,
138
152
(
2002
).
64.
X.
Wang
and
Q.
Liang
, “
Reverse bifurcation and fractal of the compound logistic map
,”
Commun. Nonlinear Sci. Numer. Simul.
13
,
913
927
(
2008
).
65.
D.
Weatherley
and
R.
Henley
, “
Flash vaporization during earthquakes evidenced by gold deposits
,”
Nat. Geosci.
6
,
294
298
(
2013
).
66.
K.
Evans
,
G.
Phillips
, and
R.
Powell
, “
Rock-buffering of auriferous fluids in altered rocks associated with the Golden Milestyle mineralization, Kalgoorlie gold field, Western Australia
,”
Econ. Geol.
101
,
805
817
(
2006
).
67.
R.
Bateman
and
S.
Hagemann
, “
Gold mineralisation throughout about 45 ma of archaean orogenesis: Protracted flux of gold in the golden mile, Yilgarn craton, western australia
,”
Miner. Depos.
39
,
536
559
(
2004
).
68.
P.
Möller
and
G.
Kersten
, “
Electrochemical accumulation of visible gold on pyrite and arsenopyrite surfaces
,”
Miner. Depos.
29
,
404
413
(
1994
).
69.
B. E.
Hobbs
and
A.
Ord
,
The Mechanics of Deforming Metamorphic Rocks
(
Elsevier
,
2015
).
70.
R. W.
Luth
, “
The mantle and core
,” in
Treatise on Geochemistry
(
Elsevier-Pergamon
,
Oxford
,
2003
), Vol. 2, pp.
319
361
.

Supplementary Material

You do not currently have access to this content.