Inappropriate patient-ventilator interactions’ (PVI) quality is associated with adverse clinical consequences, such as patient anxiety/fear and increased need of sedative and paralytic agents. Thus, technological devices/tools to support the recognition and monitoring of different PVI quality are of great interest. In the present study, we investigate two tools based on a recent landmark study which applied recurrence plots (RPs) and recurrence quantification analysis (RQA) techniques in non-invasive mechanical ventilation. Our interest is in how this approach could be a daily part of critical care professionals’ routine (which are not familiar with dynamical systems theory methods and concepts). Two representative time series of three typical PVI “scenarios” were selected from 6 critically ill patients subjected to invasive mechanical ventilation. First, both the (i) main signatures in RPs and the (ii) respective signals that provide the most (visually) discriminant RPs were identified. This allows one to propose a visual identification protocol for PVIs’ quality through the RPs’ overall aspect. Support for the effectiveness of this visual based assessment tool is given by a RQA-based assessment tool. A statistical analysis shows that both the recurrence rate and the Shannon entropy are able to identify the selected PVI scenarios. It is then expected that the development of an objective method can reliably identify PVI quality, where the results corroborate the potential of RPs/RQA in the field of respiratory pattern analysis.

1.
D.
Gilstrap
and
N.
Macintyre
, “
Patient ventilator interactions: Implications for clinical management
,”
Am. J. Respir. Crit. Care Med.
188
,
1058
1068
(
2013
).
2.
E.
Fresnel
,
J.-F.
Muir
, and
C.
Letellier
, “
Performances of domiciliary ventilators compared by using a parametric procedure
,”
EPJ Nonlinear Biomed. Phys.
4
,
6
(
2016
).
3.
K. G.
Mellott
,
M. J.
Grap
,
C. L.
Munro
,
C. N.
Sessler
,
P. A.
Wetzel
,
J. O.
Nilsestuen
, and
J. M.
Ketchum
, “
Patient ventilator asynchrony in critically ill adults: Frequency and types
,”
Heart Lung J. Acute Crit. Care
43
,
231
243
(
2014
).
4.
C.
Sinderby
,
S.
Liu
,
D.
Colombo
,
G.
Camarotta
,
A. S.
Slutsky
,
P.
Navalesi
, and
J.
Beck
, “
An automated and standardized neural index to quantify patient-ventilator interaction
,”
Crit. Care
17
,
R239
(
2013
).
5.
A. W.
Thille
,
P.
Rodriguez
,
B.
Cabello
,
F.
Lellouche
, and
L.
Brochard
, “
Patient-ventilator asynchrony during assisted mechanical ventilation
,”
Intensive Care Med.
32
,
1515
1522
(
2006
).
6.
D. C.
Chao
,
D. J.
Scheinhorn
, and
M.
Stearn-Hassenpflug
, “
Patient ventilator trigger asynchrony in prolonged mechanical ventilation
,”
Chest
112
(6),
1592
1599
(
1997
).
7.
M.
de Wit
,
K. B.
Miller
,
D. A.
Green
,
H. E.
Ostman
,
C.
Gennings
, and
S. K.
Epstein
, “
Ineffective triggering predicts increased duration of mechanical ventilation
,”
Crit. Care Med.
37
,
2740
2745
(
2009
).
8.
L.
Piquilloud
,
P.
Jolliet
, and
J.-P.
Revelly
, “
Automated detection of patient-ventilator asynchrony: New tool or new toy?
,”
Crit. Care
17
(6), 1015 (
2013
).
9.
J.-P.
Eckmann
,
S. O.
Kamphorst
, and
D.
Ruelle
, “
Recurrence plots of dynamical systems
,”
Europhys. Lett.
4
,
973
977
(
1987
).
10.
C. L.
Webber
and
N.
Marwan
, “Recurrence quantification analysis,” in
Understanding Complex Systems
, edited by
C. L.
Webber
and
N.
Marwan
(
Springer International Publishing
,
Cham
,
2015
).
11.
H.
Rabarimanantsoa
,
L.
Achour
,
C.
Letellier
,
A.
Cuvelier
, and
J.-F.
Muir
, “
Recurrence plots and Shannon entropy for a dynamical analysis of asynchronisms in noninvasive mechanical ventilation
,”
Chaos Interdiscip. J. Nonlinear Sci.
17
,
013115
(
2007
).
12.
R.
Naeck
,
D.
Bounoiare
,
U. S.
Freitas
,
H.
Rabarimanantsoa
,
A.
Portmann
,
F.
Portier
,
A.
Cuvelier
,
J.-F.
Muir
, and
C.
Letellier
, “
Dynamics underlying patient-ventilator interactions during nocturnal noninvasive ventilation
,”
Int. J. Bifurcat. Chaos
22
,
1250030
(
2012
).
13.
D. K.
Tewatia
,
R. P.
Tolakanahalli
,
B. R.
Paliwal
, and
W. A.
Tomé
, “
Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory
,”
Phys. Med. Biol.
56
,
2161
2181
(
2011
).
14.
P. I.
Terrill
,
S. J.
Wilson
,
S.
Suresh
,
D. M.
Cooper
, and
C.
Dakin
, “
Attractor structure discriminates sleep states: Recurrence plot analysis applied to infant breathing patterns
,”
IEEE Trans. Biomed. Eng.
57
,
1108
1116
(
2010
).
15.
F.
Censi
,
G.
Calcagnini
,
P.
Bartolini
,
C.
Bruni
, and
S.
Cerutti
, “
Spontaneous and forced non-linear oscillations in heart period: Role of the sinoatrial node
,”
Med. Eng. Phys.
24
,
61
69
(
2002
).
16.
F.
Censi
,
G.
Calcagnini
, and
S.
Cerutti
, “
Coupling patterns between spontaneous rhythms and respiration in cardiovascular variability signals
,”
Comput. Methods Programs Biomed.
68
,
37
47
(
2002
).
17.
C.
Letellier
, “
Estimating the Shannon entropy: Recurrence plots versus symbolic dynamics
,”
Phys. Rev. Lett.
96
,
1
4
(
2006
).
18.
B. K.
Patel
,
K. S.
Wolfe
,
A. S.
Pohlman
,
J. B.
Hall
, and
J. P.
Kress
, “
Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome
,”
J. Am. Assoc.
60637
,
1
7
(
2016
).
19.
C.
Gregoretti
,
L.
Pisani
,
A.
Cortegiani
, and
V. M.
Ranieri
, “
Noninvasive ventilation in critically ill patients
,”
Crit. Care Clin.
31
,
435
457
(
2015
).
20.
N.
Marwan
, “
A historical review of recurrence plots
,”
Eur. Phys. J. Spec. Top.
164
,
3
12
(
2008
).
21.
F.
Takens
, “
Detecting strange attractors in turbulence
,”
Lect. Notes Math.
898
,
366
381
(
1981
).
22.
N.
Marwan
,
M.
Carmen Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
,
237
329
(
2007
).
23.
L. L.
Trulla
,
A.
Giuliani
,
J. P.
Zbilut
, and
C. L.
Webber
, “
Recurrence quantification analysis of the logistic equation with transients
,”
Phys. Lett. A
223
,
255
260
(
1996
).
24.
L. L.
Portes
,
R. N.
Benda
,
H.
Ugrinowitsch
, and
L. A.
Aguirre
, “
Impact of the recorded variable on recurrence quantification analysis of flows
,”
Phys. Lett. A
378
,
2382
2388
(
2014
).
25.
L.
Cao
, “
Practical method for determining the minimum embedding dimension of a scalar time series
,”
Physica D
110
,
43
50
(
1997
).
26.
M. B.
Kennel
,
R.
Brown
, and
H. D. I.
Abarbanel
, “
Determining embedding dimension for phase-space reconstruction using a geometrical construction
,”
Phys. Rev. A
45
,
3403
3411
(
1992
).
27.
W.
Liebert
and
H. G.
Schuster
, “
Proper choice of the time delay for the analysis of chaotic time series
,”
Phys. Lett. A
142
,
107
111
(
1989
).
28.
A. M.
Fraser
and
H. L.
Swinney
, “
Independent coordinates for strange attractors from mutual information
,”
Phys. Rev. A
33
,
1134
1140
(
1986
).
29.
S.
Nava
,
C.
Bruschi
,
C.
Fracchia
,
A.
Braschi
, and
F.
Rubini
, “
Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies
,”
Eur. Respir. J.
10
,
177
183
(
1997
).
30.
L. A.
Aguirre
, “
A nonlinear correlation function for selecting the delay time in dynamical reconstructions
,”
Phys. Lett. A
203
,
88
94
(
1995
).
31.
H. H.
Abdi
, “
The Bonferonni and Sidak corrections for multiple comparisons
,”
Encycl. Meas. Stat.
1
,
1
9
(
2007
).
You do not currently have access to this content.