The inter beat interval (IBI) duration and systolic blood pressure (SBP) are cardiovascular variables related through several feedback mechanisms. We propose the analysis of diagonal lines in cross recurrence plots (CRPs) from IBI and SBP embedded within the same phase space to identify events where trajectories of both variables concur. The aim of the study was to describe the relationship between IBI and SBP of healthy subjects using CRP and diagonal analysis during baseline condition—supine position (SP)—and how the relationship changes during the physiological stress of active standing (AS). IBI and SBP time series were obtained from continuous blood pressure recordings during SP and AS (15 min each) in 19 young healthy subjects. IBI and SBP time series were embedded within a five-dimensional phase space using an embedding delay estimated from cross correlation between IBI and SBP. During SP, mean CRP showed high determinism (≥85%) and also brief but repeated events where both variables stay within a reduced space. Most quantitative recurrences analysis indexes of CRP increased significantly (p < 0.05) during AS. CRP analysis showed short diagonals indicating a very strong deterministic relationship between IBI and SBP with intermittent unlocking periods. The strength of IBI and SBP relationship increased during the physiological stress of AS. The CRP method allowed a rigorous quantitative description of the deterministic association between these two variables. Diagonal lines were intermittent and not always parallel, showing that there is not a defined and unique rhythm. This suggests the activation of different influences at different times and with different precedence between the heart rate and blood pressure in response to AS.

1.
C. M.
Heesch
, “
Reflexes that control cardiovascular function
,”
Am. J. Physiol.
277
,
S234
S243
(
1999
).
2.
I. M.
Salman
, “
Major autonomic neuroregulatory pathways underlying short- and long-term control of cardiovascular function
,”
Curr. Hypertens. Rep.
18
,
18
(
2016
).
3.
B. S.
Zanutto
,
M. E.
Valentinuzzi
, and
E. T.
Segura
, “
Neural set point for the control of arterial pressure: Role of the nucleus tractus solitarius
,”
Biomed. Eng. Online
9
,
4
(
2010
).
4.
B. S.
McEwen
, “
Sex, stress and the hippocampus: Allostasis, allostatic load and the aging process
,”
Neurobiol. Aging
23
,
921
939
(
2002
).
5.
P.
Sterling
, “
Principles of allostasis: Optimal design, predictive regulation, pathophysiology and rational therapeutics
,” in
Allostasis, Homeostasis and the Cost of Adaptation
, edited by
J.
Schulkin
(
Cambridge University Press
,
Cambridge
,
2004
).
6.
B.
Estanol
,
M.
Porras-Betancourt
,
G.
Sanchez-Torres
,
R.
Martinez-Memije
,
O.
Infante
, and
H.
Senties-Madrid
, “
Neural control of the peripheral circulation and blood pressure
,”
Arch. Cardiol. Mex.
79
,
109
116
(
2009
).
7.
J. J.
Goldberger
,
S.
Challapalli
,
R.
Tung
,
M. A.
Parker
, and
A. H.
Kadish
, “
Relationship of heart rate variability to parasympathetic effect
,”
Circulation
103
,
1977
1983
(
2001
).
8.
S.
Akselrod
,
D.
Gordon
,
F. A.
Ubel
,
D. C.
Shannon
,
A. C.
Berger
, and
R. J.
Cohen
, “
Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control
,”
Science
213
,
220
222
(
1981
).
9.
E.
Gil
,
M.
Orini
,
R.
Bailon
,
J. M.
Vergara
,
L.
Mainardi
, and
P.
Laguna
, “
Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions
,”
Physiol. Meas.
31
,
1271
1290
(
2010
).
10.
D. L.
Eckberg
, “
Physiological basis for human autonomic rhythms
,”
Ann. Med.
32
,
341
349
(
2000
).
11.
M.
Pagani
,
F.
Lombardi
,
S.
Guzzetti
,
O.
Rimoldi
,
R.
Furlan
,
P.
Pizzinelli
,
G.
Sandrone
,
G.
Malfatto
,
S.
Dell’Orto
, and
E.
Piccaluga
, “
Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog
,”
Circ. Res.
59
,
178
193
(
1986
).
12.
P.
Martinez-Garcia
,
C.
Lerma
, and
O.
Infante
, “
Baroreflex sensitivity estimation by the sequence method with delayed signals
,”
Clin. Auton. Res.
22
,
289
297
(
2012
).
13.
P. B.
Persson
, “
Modulation of cardiovascular control mechanisms and their interaction
,”
Physiol. Rev.
76
,
193
244
(
1996
).
14.
S.
Schulz
,
F. C.
Adochiei
,
I. R.
Edu
,
R.
Schroeder
,
H.
Costin
,
K. J.
Bar
, and
A.
Voss
, “
Cardiovascular and cardiorespiratory coupling analyses: A review
,”
Philos. Trans. A Math. Phys. Eng. Sci.
371
,
20120191
(
2013
).
15.
A.
Muller
,
J. F.
Kraemer
,
T.
Penzel
,
H.
Bonnemeier
,
J.
Kurths
, and
N.
 
Wessel
, “
Causality in physiological signals
,”
Physiol. Meas.
37
,
R46
R72
(
2016
).
16.
H.
Gonzalez
,
O.
Infante
,
H.
Perez-Grovas
,
M. V.
Jose
, and
C.
Lerma
, “
Nonlinear dynamics of heart rate variability in response to orthostatism and hemodialysis in chronic renal failure patients: Recurrence analysis approach
,”
Med. Eng. Phys.
35
,
178
187
(
2013
).
17.
H.
Gonzalez
,
O.
Infante
, and
C.
Lerma
, “
Response to active standing of heart beat interval, systolic blood volume and systolic blood pressure: recurrence plot analysis
,” in
Translational Recurrences
, edited by
N.
Marwan
,
M.
Riley
,
A.
Giuliani
, and
C. L.
Webber
, Jr. (
Springer
,
Switzerland
,
2014
), pp.
109
123
.
18.
M.
Javorka
,
Z.
Turianikova
,
I.
Tonhajzerova
,
K.
Javorka
, and
M.
Baumert
, “
The effect of orthostasis on recurrence quantification analysis of heart rate and blood pressure dynamics
,”
Physiol. Meas.
30
,
29
41
(
2009
).
19.
G. M.
Ramirez Avila
,
A.
Gapelyuk
,
N.
Marwan
,
T.
Walther
,
H.
Stepan
,
J.
Kurths
, and
N.
Wessel
, “
Classification of cardiovascular time series based on different coupling structures using recurrence networks analysis
,”
Philos. Trans. A Math. Phys. Eng. Sci.
371
,
20110623
(
2013
).
20.
N.
Marwan
,
Y.
Zou
,
N.
Wessel
,
M.
Riedl
, and
J.
Kurths
, “
Estimating coupling directions in the cardiorespiratory system using recurrence properties
,”
Philos. Trans. A Math. Phys. Eng. Sci.
371
,
20110624
(
2013
).
21.
F.
Censi
,
G.
Calcagnini
,
S.
Lino
,
S. R.
Seydnejad
,
R. I.
Kitney
, and
S.
 
Cerutti
, “
Transient phase locking patterns among respiration, heart rate and blood pressure during cardiorespiratory synchronisation in humans
,”
Med. Biol. Eng. Comput.
38
,
416
426
(
2000
).
22.
F.
Censi
,
G.
Calcagnini
, and
S.
Cerutti
, “
Coupling patterns between spontaneous rhythms and respiration in cardiovascular variability signals
,”
Comput. Methods Programs Biomed.
68
,
37
47
(
2002
).
23.
N.
Marwan
and
J.
Kurths
, “
Nonlinear analysis of bivariate data with cross recurrence plots
,”
Phys. Lett. A
302
,
299
307
(
2002
).
24.
N.
Marwan
,
C. M.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plot analysis for complex systems
,”
Phys. Rep.
438
,
237
329
(
2007
).
25.
N.
Marwan
, and
C. L.
Webber
, Jr.
, “
Mathematical and computational foundations of recurrence quantifications
,” in
Recurrence Quantification Analysis
, edited by
C. L.
Webber
, Jr.
and
N.
Marwan
(
London
,
2015
), pp.
3
43
.
26.
L.
Faes
,
G.
Nollo
, and
A.
Porta
, “
Mechanisms of causal interaction between short-term RR interval and systolic arterial pressure oscillations during orthostatic challenge
,”
J. Appl. Physiol.
114
,
1657
1667
(
2013
).
27.
A.
Silvani
,
G.
Calandra-Buonaura
,
B. D.
Johnson
,
N.
van Helmond
,
G.
Barletta
,
A. G.
Cecere
,
M. J.
Joyner
, and
P.
Cortelli
, “
Physiological mechanisms mediating the coupling between heart period and arterial pressure in response to postural changes in humans
,”
Front. Physiol.
8
,
163
(
2017
).
28.
O.
Infante
,
S.
Valenzuela
, and
S.
Polo
, “
Algorithm that uses the second derivative to identify the QRS complex in real time
,”
Rev. Mex. Ing. Biomed.
13
,
23
32
(
1992
).
29.
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology
, “
Heart rate variability. Standards of measurement, physiological interpretation, and clinical use
,”
Eur. Heart J.
17
,
354
381
(
1996
).
30.
J. M.
Gottman
,
Time Series Analysis: A Comprehensive Introduction to Social Scientists
(
Cambridge University Press
,
New York
,
1988
), p.
318
.
31.
N.
Marwan
,
Encounters with Neighbours: Current Developments of Concepts Based on Recurrent Plots and Their Applications
(
Potsdam University
,
2003
).
32.
C. L.
Webber
, Jr.
and
J. P.
Zbilut
, “
Recurrence quantification analysis of nonlinear dynamical systems
,” in
Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences
, edited by
M. A.
Riley
and
G. C.
Van Orden
(
2005
), pp.
26
94
; https://www.nsf.gov/pubs/2005/nsf05057/ nmbs/nmbs.pdf; accessed 17 August 2018.
33.
J. B.
Gao
,
Y.
Cao
,
L.
Gu
,
J. G.
Harris
, and
J. C.
Principe
, “
Detection of weak transitions in signal dynamics using recurrence time statistics
,”
Phys. Lett. A
317
,
64
72
(
2003
).
34.
J. C.
Echeverria
,
O.
Infante
,
H.
Perez-Grovas
,
H.
Gonzalez
,
M. V.
Jose
, and
C.
Lerma
, “
Effects of orthostatism and hemodialysis on mean heart period and fractal heart rate properties of chronic renal failure patients
,”
Artif. Organs
41
,
1026
1034
(
2017
).
35.
C.
Lerma
,
J. C.
Echeverria
,
O.
Infante
,
H.
Perez-Grovas
, and
H.
Gonzalez-Gomez
, “
Sign and magnitude scaling properties of heart rate variability in patients with end-stage renal failure: Are these properties useful to identify pathophysiological adaptations?
,”
Chaos
27
,
093906
(
2017
).
36.
J.
Svacinova
,
M.
Javorka
,
Z.
Novakova
,
E.
Zavodna
,
B.
Czippelova
, and
N.
Honzikova
, “
Development of causal interactions between systolic blood pressure and inter-beat intervals in adolescents
,”
Physiol. Res.
64
,
821
829
(
2015
).
37.
V.
Donner
,
M.
Small
,
J. F.
Donges
,
N.
Marwan
,
Y.
Zou
,
R.
Xiang
, and
J.
Kurths
, “
Recurrence-based time series analysis by means of complex network methods
,”
Int. J. Bifurcat. Chaos
21
,
1019
1046
(
2011
).
You do not currently have access to this content.