Recurrence analysis and its quantifiers are strongly dependent on the evaluation of the vicinity threshold parameter, i.e., the threshold to regard two points close enough in phase space to be considered as just one. We develop a new way to optimize the evaluation of the vicinity threshold in order to assure a higher level of sensitivity to recurrence quantifiers to allow the detection of even small changes in the dynamics. It is used to promote recurrence analysis as a tool to detect nonstationary behavior of time signals or space profiles. We show that the ability to detect small changes provides information about the present status of the physical process responsible to generate the signal and offers mechanisms to predict future states. Here, a higher sensitive recurrence analysis is proposed as a precursor, a tool to predict near future states of a particular system, based on just (experimentally) obtained signals of some available variables of the system. Comparisons with traditional methods of recurrence analysis show that the optimization method developed here is more sensitive to small variations occurring in a signal. The method is applied to numerically generated time series as well as experimental data from physiology.

1.
P. C. D.
Milly
,
J.
Betancourt
,
M.
Falkenmark
,
R. M.
Hirsch
,
Z. W.
Kundzewicz
,
D. P.
Lettenmaier
, and
R. J.
Stouffer
, “
Stationarity is dead: Whither water management?
,”
Science
319
(
5863
),
573
574
(
2008
).
2.
C.
Rieke
,
K.
Sternickel
,
R. G.
Andrzejak
,
C. E.
Elger
,
P.
David
, and
K.
Lehnertz
, “
Measuring nonstationarity by analyzing the loss of recurrence in dynamical systems
,”
Phys. Rev. Lett.
88
(
24
),
244102
(
2002
).
3.
G. E. P.
Box
,
G. M.
Jenkins
,
G. C.
Reinsel
, and
G. M.
Ljung
,
Time Series Analysis: Forecasting and Control
(
John Wiley & Sons
,
2015
).
4.
Nonlinear Analysis of Physiological Data
, 1st ed., edited by
H.
Kantz
,
J.
Kurths
, and
G.
Mayer-Kress
(
Springer-Verlag
,
Heidelberg, Germany
,
1998
).
5.
P.
Bernaola-Galván
,
P. Ch.
Ivanov
,
L. A.
Nunes Amaral
, and
H. E.
Stanley
, “
Scale invariance in the nonstationarity of human heart rate
,”
Phys. Rev. Lett.
87
,
168105
(
2001
).
6.
P. M.
Robinson
,
Time Series with Long Memory
(
Advanced Texts in Econometrics
,
2003
).
7.
Y.
Ashkenazy
,
P. Ch.
Ivanov
,
S.
Havlin
,
C.-K.
Peng
,
A. L.
Goldberger
, and
H. E.
Stanley
, “
Magnitude and sign correlations in heartbeat fluctuations
,”
Phys. Rev. Lett.
86
,
1900
1903
(
2001
).
8.
L.
Xu
,
Z.
Chen
,
K.
Hu
,
H. E.
Stanley
, and
P. Ch.
Ivanov
, “
Spurious detection of phase synchronization in coupled nonlinear oscillators
,”
Phys. Rev. E
73
,
065201
(
2006
).
9.
P.
Bernaola-Galván
,
J. L.
Oliver
,
M.
Hackenberg
,
A. V.
Coronado
,
P. Ch.
Ivanov
, and
P.
Carpena
, “
Segmentation of time series with long-range fractal correlations
,”
Eur. Phys. J. B
85
(
6
),
211
(
2012
).
10.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
, “
Phase synchronization of chaotic oscillators
,”
Phys. Rev. Lett.
76
,
1804
1807
(
1996
).
11.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
, “
From phase to lag synchronization in coupled chaotic oscillators
,”
Phys. Rev. Lett.
78
,
4193
4196
(
1997
).
12.
Z.
Chen
,
K.
Hu
,
H. E.
Stanley
,
V.
Novak
, and
P. Ch.
Ivanov
, “
Cross-correlation of instantaneous phase increments in pressure-flow fluctuations: Applications to cerebral autoregulation
,”
Phys. Rev. E
73
,
031915
(
2006
).
13.
T.
Stankovski
,
A.
Duggento
,
P. V. E.
McClintock
, and
A.
Stefanovska
, “
Inference of time-evolving coupled dynamical systems in the presence of noise
,”
Phys. Rev. Lett.
109
,
024101
(
2012
).
14.
A.
Bashan
,
R. P.
Bartsch
,
J. W.
Kantelhardt
,
S.
Havlin
, and
P. Ch.
Ivanov
, “
Network physiology reveals relations between network topology and physiological function
,”
Nat. Commun.
3
,
702
(
2012
).
15.
R. P.
Bartsch
,
K. K. L.
Liu
,
A.
Bashan
, and
P. Ch.
Ivanov
, “
Network physiology: How organ systems dynamically interact
,”
PLoS ONE
10
(
11
),
1
36
(
2015
).
16.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
(
5-6
),
237
329
(
2007
).
17.
E. G.
Souza
,
R. L.
Viana
, and
S. R.
Lopes
, “
Using recurrences to characterize the hyperchaos-chaos transition
,”
Phys. Rev. E
78
,
066206
(
2008
).
18.
R. C.
Budzinski
,
B. R. R.
Boaretto
,
T. L.
Prado
, and
S. R.
Lopes
, “
Detection of nonstationary transition to synchronized states of a neural network using recurrence analyses
,”
Phys. Rev. E
96
(
1
),
012320
(
2017
).
19.
D. B.
Vasconcelos
,
S. R.
Lopes
,
R. L.
Viana
, and
J.
Kurths
, “
Spatial recurrence plots
,”
Phys. Rev. E
73
,
056207
(
2006
).
20.
T. L.
Prado
,
P. P.
Galuzio
,
S. R.
Lopes
, and
R. L.
Viana
, “
Spatial recurrence analysis: A sensitive and fast detection tool in digital mammography
,”
Chaos
24
(
1
),
013106
(
2014
).
21.
J. P.
Zbilut
and
C. L.
Webber
, “
Recurrence quantification analysis: Introduction and historical context
,”
Int. J. Bifurcat. Chaos
17
(
10
),
3477
3481
(
2007
).
22.
G. Z.
dos Santos Lima
,
S. R.
Lopes
,
T. L.
Prado
,
B.
Lobao-Soares
,
G. C.
do Nascimento
,
J.
Fontenele-Araujo
, and
G.
Corso
, “
Predictability of arousal in mouse slow wave sleep by accelerometer data
,”
PloS ONE
12
(
5
),
e0176761
(
2017
).
23.
H.
Poincaré
, “
Sur la probleme des trois corps et les équations de la dynamique
,”
Acta Math.
13
(
1
),
1
271
(
1890
).
24.
J.-P.
Eckmann
,
S. O.
Kamphorst
, and
D.
Ruelle
, “
Recurrence plots of dynamical systems
,”
Europhys. Lett.
4
(
9
),
973
(
1987
).
25.
J. P.
Zbilut
and
C. L.
Webber
, “
Embeddings and delays as derived from quantification of recurrence plots
,”
Phys. Lett. A
171
(
3
),
199
203
(
1992
).
26.
J. P.
Zbilut
,
J. M.
Zaldivar-Comenges
, and
F.
Strozzi
, “
Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data
,”
Phys. Lett. A
297
(
3-4
),
173
181
(
2002
).
27.
J. B.
Gao
, “
Recurrence time statistics for chaotic systems and their applications
,”
Phys. Rev. Lett.
83
(
16
),
3178
(
1999
).
28.
C.
Letellier
, “
Estimating the shannon entropy: Recurrence plots versus symbolic dynamics
,”
Phys. Rev. Lett.
96
(
25
),
254102
(
2006
).
29.
M.
Thiel
,
M. C.
Romano
,
J.
Kurths
,
R.
Meucci
,
E.
Allaria
, and
F. T.
Arecchi
, “
Influence of observational noise on the recurrence quantification analysis
,”
Physica D
171
(
3
),
138
152
(
2002
).
30.
R.
Manuca
and
R.
Savit
, “
Stationarity and nonstationarity in time series analysis
,”
Physica D
99
(
2
),
134
161
(
1996
).
31.
M. B.
Kennel
, “
Statistical test for dynamical nonstationarity in observed time-series data
,”
Phys. Rev. E
56
(
1
),
316
(
1997
).
32.
Y.
Chen
and
H.
Yang
, “
Multiscale recurrence analysis of long-term nonlinear and nonstationary time series
,”
Chaos Solitons Fractals
45
(
7
),
978
987
(
2012
).
33.
J. B.
Gao
, “
Detecting nonstationarity and state transitions in a time series
,”
Phys. Rev. E
63
(
6
),
066202
(
2001
).
34.
L. L.
Trulla
,
A.
Giuliani
,
J. P.
Zbilut
, and
C. L.
Webber
, “
Recurrence quantification analysis of the logistic equation with transients
,”
Phys. Lett. A
223
(
4
),
255
260
(
1996
).
35.
Y.
Liu
,
M.
Kankaanpää
,
J. P
Zbilut
, and
C. L
Webber
, “
EMG recurrence quantifications in dynamic exercise
,”
Biol. Cybern.
90
(
5
),
337
348
(
2004
).
36.
N.
Marwan
and
A.
Meinke
, “
Extended recurrence plot analysis and its application to erp data
,”
Int. J. Bifurcat. Chaos
14
(
02
),
761
771
(
2004
).
37.
L. M.
Pecora
,
T. L.
Carroll
,
G. A.
Johnson
,
D. J.
Mar
, and
J. F.
Heagy
, “
Fundamentals of synchronization in chaotic systems, concepts, and applications
,”
Chaos
7
(
4
),
520
543
(
1997
).
38.
G. Z.
dos Santos Lima
,
B.
Lobão-Soares
,
G. C.
do Nascimento
,
A. S. C.
França
,
L.
Muratori
,
S.
Ribeiro
, and
G.
Corso
, “
Mouse activity across time scales: Fractal scenarios
,”
PLoS ONE
9
(
10
),
1
12
(
2014
).
39.
P.
Halász
,
M.
Terzano
,
L.
Parrino
, and
R.
Bódizs
, “
The nature of arousal in sleep
,”
J. Sleep Res.
13
(
1
),
1
23
(
2004
).
40.
J.
Trinder
,
N.
Allen
,
J.
Kleiman
,
V.
Kralevski
,
D.
Kleverlaan
,
K.
Anson
, and
Y.
Kim
, “
On the nature of cardiovascular activation at an arousal from sleep
,”
Sleep
26
(
5
),
543
551
(
2003
).
You do not currently have access to this content.