In this work, we apply the spatial recurrence quantification analysis (RQA) to identify chaotic burst phase synchronisation in networks. We consider one neural network with small-world topology and another one composed of small-world subnetworks. The neuron dynamics is described by the Rulkov map, which is a two-dimensional map that has been used to model chaotic bursting neurons. We show that with the use of spatial RQA, it is possible to identify groups of synchronised neurons and determine their size. For the single network, we obtain an analytical expression for the spatial recurrence rate using a Gaussian approximation. In clustered networks, the spatial RQA allows the identification of phase synchronisation among neurons within and between the subnetworks. Our results imply that RQA can serve as a useful tool for studying phase synchronisation even in networks of networks.

1.
G.
Deco
,
A.
Buehlmann
,
T.
Masquelier
, and
E.
Hugues
, “
The role of rhythmic neural synchronization in rest and task conditions
,”
Front. Hum. Neurosci.
5
,
1
6
(
2011
).
2.
T.
Womelsdorf
,
J.-M.
Schoffelen
,
R.
Oostenveld
,
W.
Singer
,
R.
Desimone
,
A. K.
Engel
, and
P.
Fries
, “
Modulation of neuronal interactions through neuronal synchronization
,”
Science
316
,
1609
1612
(
2007
).
3.
P. J.
Uhlhaas
and
W.
Singer
, “
Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology
,”
Neuron.
52
,
155
168
(
2006
).
4.
L. L.
Rubchinsky
,
C.
Park
, and
R. M.
Worth
, “
Intermittent neural synchronization in Parkinson’s disease
,”
Nonlinear Dyn.
68
,
329
346
(
2012
).
5.
K.
Lehnertz
,
S.
Bialonski
,
M.-T.
Horstmann
,
D.
Krug
,
A.
Rothkegel
,
M.
Staniek
, and
T.
Wagner
, “
Synchronization phenomena in human epileptic brain networks
,”
J. Neurosci. Methods
183
,
42
48
(
2009
).
6.
S.
Boccaletti
,
G.
Bianconi
,
R.
Criado
,
C. I.
del Genio
,
J.
Gómez-Gardeñes
,
M.
Romance
,
I.
Sendiña-Nadal
,
Z.
Wang
, and
M.
Zanin
, “
The structure and dynamics of multilayer networks
,”
Phys. Rep.
544
,
1
22
(
2014
).
7.
D. Y.
Kenett
,
M.
Perc
, and
S.
Boccaletti
, “
Networks of networks—An introduction
,”
Chaos Solitons Fractals
80
,
1
6
(
2015
).
8.
N. F.
Rulkov
, “
Modeling of spiking-bursting neural behavior using two-dimensional map
,”
Phys. Rev. E
65
,
041922
(
2001
).
9.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
,
440
(
1998
).
10.
O.
Sporns
and
C. J.
Honey
, “
Small worlds inside big brains
,”
Proc. Natl. Acad. Sci.
103
,
19219
(
2006
).
11.
S.
Achard
,
R.
Salvador
,
B.
Whitcher
,
J.
Suckling
, and
E.
Bullmore
, “
A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
,”
J. Neurosci.
26
,
63
(
2006
).
12.
E. L.
Lameu
,
F. S.
Borges
,
R. R.
Borges
,
A. M.
Batista
,
M. S.
Baptista
, and
R. L.
Viana
, “
Network and external perturbation induce burst synchronisation in cat cerebral cortez
,”
Commun. Nonlinear Sci. Numer. Simul.
34
,
45
(
2016
).
13.
E. L.
Lameu
,
F. S.
Borges
,
R. R.
Borges
,
K. C.
Iarosz
,
I. L.
Caldas
,
A. M.
Batista
,
R. L.
Viana
, and
J.
Kurths
, “
Supression of phase synchronisation in network based on cat’s brain
,”
Chaos
26
,
043107
(
2016
).
14.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
,
237
(
2007
).
15.
M. S.
Santos
,
J. D.
Szezech, Jr.
,
A. M.
Batista
,
I. L.
Caldas
,
R. L.
Viana
, and
S. R.
Lopes
, “
Recurrence quantification analysis of chimera states
,”
Phys. Lett. A
379
,
2188
(
2015
).
16.
M. S.
Santos
,
J. D.
Szezech, Jr.
,
F. S.
Borges
,
K. C.
Iarosz
,
I. L.
Caldas
,
A. M.
Batista
,
R. L.
Viana
, and
J.
Kurths
, “
Chimera-like states in a neuronal network model of the cat brain
,”
Chaos Solitons Fractals
101
,
86
(
2017
).
17.
J. P.
Eckmann
,
S. O.
Kamphorst
, and
D.
Ruelle
, “
Recurrence plot of dynamical systems
,”
Europhys. Lett.
5
,
973
(
1987
).
18.
D. B.
Vasconcelos
,
S. R.
Lopes
,
R. L.
Viana
, and
J.
Kurths
, “
Spatial recurrence plots
,”
Phys. Rev. E
73
,
1
10
(
2006
).
19.
N.
Marwan
,
N.
Wessel
,
U.
Meyerfeldt
,
A.
Schirdewan
, and
J.
Kurths
, “
Recurrence-plot-based measures of complexity and their application to heart-rate-variability data
,”
Phys. Rev. E
66
,
1
8
(
2002
).
20.
C. A. S.
Batista
,
A. M.
Batista
,
J. A. C.
de Pontes
,
R. L.
Viana
, and
S. R.
Lopes
, “
Chaotic phase synchronization in scale-free networks of bursting neurons
,”
Phys. Rev. E
76
,
016218
(
2007
).
21.
R. L.
Viana
,
A. M.
Batista
,
C. A. S.
Batista
,
J. C. A.
de Pontes
,
F. A. dos S.
Silva
, and
S. R.
Lopes
, “
Bursting synchronization in networks with long-range coupling mediated by a diffusing chemical substance
,”
Commun. Nonlinear Sci. Numer. Simul.
17
,
2924
(
2012
).
22.
Y.
Kuramoto
,
Oscillations, Waves, and Turbulence
(
Springer-Verlag
,
Berlin
,
1984
).
23.
J. M. V.
Grzybowski
,
E. E. N.
Macau
, and
T.
Yoneyama
, “
On synchronization in power-grids modelled as networks of second-order Kuramoto oscillators
,”
Chaos
26
,
113113
(
2016
).
24.
C.
Freitas
,
E.
Macau
, and
R. L.
Viana
, “
Synchronization versus neighborhood similarity in complex networks of nonidentical oscillators
,”
Phys. Rev. E
92
,
032901
(
2015
).
25.
C.
Freitas
,
E.
Macau
, and
A.
Pikovsky
, “
Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model
,”
Chaos
25
,
043119
(
2015
).
26.
D.
Witthaut
and
M.
Timme
, “
Kuramoto dynamics in Hamiltonian systems
,”
Phys. Rev. E
90
,
032917
(
2014
).
27.
C. A. S.
Batista
,
S. R.
Lopes
,
R. L.
Viana
, and
A. M.
Batista
, “
Delayed control of bursting synchronization in a scale-free neuronal network
,”
Neural Netw.
23
,
114
(
2010
).
28.
J. P.
Zbilut
and
C. L.
Webber, Jr
., “
Embeddings and delays as derived from quantification of recurrence plots
,”
Phys. Lett. A
171
,
199
(
1992
).
29.
J. P.
Zbilut
,
N.
Thomasson
, and
C. L.
Webber
, “
Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals
,”
Med. Eng. Phys.
24
,
53
(
2002
).
30.
Z. O.
Guimarães-Filho
,
I. L.
Caldas
,
R. L.
Viana
,
J.
Kurths
,
I. C.
Nascimento
, and
Yu. K.
Kuznetsov
, “
Recurrence quantification analysis of electrostatic fluctuations in fusion plasmas
,”
Phys. Lett. A
372
,
1088
(
2008
).
31.
M. E. J.
Newman
and
D. J.
Watts
, “
Renormalization group analysis of the small-world network model
,”
Phys. Lett. A
263
,
341
(
1999
).
32.
B.
Sonnenschein
and
L.
Schimansky-Geier
, “
Approximate solution to the stochastic Kuramoto model
,”
Phys. Rev. E
88
,
052111
(
2013
).
33.
V.
Popovych
,
S.
Yanchuk
, and
P. A.
Tass
, “
Self-organized noise resistance of oscillatory neural networks with spike timing-dependent plasticity
,”
Sci. Rep.
3
,
2926
(
2013
).
34.
L.
Melloni
,
C.
Molina
,
M.
Pena
,
D.
Torres
,
W.
Singer
, and
E.
Rodriguez
, “
Synchronization of neural activity across cortical areas correlates with conscious perceptions
,”
J. Neurosci.
27
,
2858
(
2007
).
35.
J.
Fell
and
N.
Axmacher
, “
The role of phase synchronization in memory processes
,”
Nat. Rev. Neurosci.
12
,
105
(
2011
).
You do not currently have access to this content.