Coupled nonlinear oscillators can present complex spatiotemporal behaviors. Here, we report the coexistence of coherent and incoherent domains, called chimera states, in an array of identical Duffing oscillators coupled to their nearest neighbors. The chimera states show a significant variation of amplitude in the desynchronized domain. These intriguing states are observed in the bistability region between a homogeneous state and a spatiotemporal chaotic one. These dynamical behaviors are characterized by their Lyapunov spectra and their global phase coherence order parameter. The local coupling between oscillators prevents one domain from invading the other one. Depending on initial conditions, a family of chimera states appear, organized in a snaking-like diagram.

1.
A.
Frova
and
M.
Marenzana
,
Thus Spoke Galileo: The Great Scientist’s Ideas and Their Relevance to the Present Day
(
Oxford University Press
,
2006
).
2.
L.
Euler
, “
De novo genere oscillationum
,”
Comment. Acad. Sc. Petrop.
11
,
128
(
1750
).
3.
I.
Kovacic
and
M. J.
Brennan
,
The Duffing Equation: Nonlinear Oscillators and their Behaviour
(
John Wiley and Sons
,
2011
).
4.
D. K.
Umberger
,
C.
Grebogi
,
E.
Ott
, and
B.
Afeyan
,
Phys. Rev. A
39
,
4835
(
1989
).
5.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Courier Corporation
,
2003
).
6.
A.
Pikovsky
,
M.
Rosenblum
,
J.
Kurths
, and
R. C.
Hilborn
,
Synchronisation: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2002
).
7.
K.
Kaneko
and
I.
Tsuda
,
Chaos and Beyond: A Constructive Approach with Applications in Life Sciences
(
Springer
,
1996
).
8.
D. M.
Abrams
and
S. H.
Strogatz
,
Phys. Rev. Lett.
93
(
17
),
174102
(
2004
).
9.
Y.
Kuramoto
and
D.
Battogtokh
,
Nonlinear Phenom. Complex Syst.
5
,
380
(
2002
).
11.
G. C.
Sethia
,
A.
Sen
, and
G. L.
Johnston
,
Phys. Rev. E
88
,
042917
(
2013
).
12.
O. E.
Omel’chenko
,
Nonlinearity
26
(
9
),
2469
(
2013
).
13.
L.
Smirnov
,
G.
Osipov
, and
A.
Pikovsky
,
J. Phys. A
50
(
8
),
08LT01
(
2017
).
14.
E. A.
Martens
,
M.
J.Panaggio
, and
D. M.
Abrams
,
New J. Phys.
18
(
2
),
022002
(
2016
).
15.
D.
Dudkowski
,
Y.
Maistrenko
, and
T.
Kapitaniak
,
Phys. Rev. E
90
,
032920
(
2014
).
16.
R.
Gopal
,
V.
K.Chandrasekar
,
A.
Venkatesan
, and
M.
Lakshmanan
,
Phys. Rev. E
89
,
052914
(
2014
).
17.
E.
Schöll
,
Eur. Phys. J. Spec. Top.
225
,
891–919
(
2016
).
18.
E.
Omel’chenko
,
Y.
L.Maistrenko
, and
P. A.
Tass
,
Phys. Rev. Lett.
100
(
4
),
044105
(
2008
).
19.
E. A.
Martens
,
Phys. Rev. E
82
,
016216
(
2010
).
20.
I.
Omelchenko
,
E.
Omel’chenko
,
A.
Zakharova
,
M.
Wolfrum
, and
E.
Schöll
,
Phys. Rev. Lett.
116
,
114101
(
2016
).
21.
L.
Tumash
,
A.
Zakharova
,
J.
Lehnert
,
W.
Just
, and
E.
Schöll
,
Europhys. Lett.
117
,
20001
(
2017
).
22.
V. M.
Bastidas
,
I.
Omelchenko
,
A.
Zakharova
,
E.
Schöll
, and
T.
Brandes
,
Phys. Rev. E
92
,
062924
(
2015
).
23.
N.
Lazarides
,
G.
Neofotistos
, and
G. P.
Tsironis
,
Phys. Rev. B
91
,
054303
(
2015
).
24.
J.
Hizanidis
,
V. G.
Kanas
,
A.
Bezerianos
, and
T.
Bountis
, in
2014 13th International Conference on Control Automation Robotics and Vision (ICARCV)
(
IEEE
,
2014
, December), pp.
243
246
.
25.
M. S.
Santos
,
J. D.
Szezech
,
F. S.
Borges
,
K. C.
Iarosz
,
I. L.
Caldas
,
A. M.
 
Batista
,
R. L.
Viana
, and
J.
Kurths
,
Chaos Solitons Fractals
101
,
86
91
(
2017
).
26.
L.
Larger
,
B.
Penkovsky
, and
Y.
Maistrenko
,
Phys. Rev. Lett.
111
,
054103
(
2013
).
27.
B. K.
Bera
and
D.
Ghosh
,
Phys. Rev. E
93
,
052223
(
2016
).
28.
J. C.
Gonzalez-Avella
,
M. G.
Cosenza
, and
M.
San Miguel
,
Physica A
399
,
24
(
2014
).
29.
M. R.
Tinsley
,
S.
Nkomo
, and
K.
Showalter
,
Nat. Phys.
8
,
662-665
(
2012
).
30.
A. M.
Hagerstrom
,
T. E.
Murphy
,
R.
Roy
,
P.
Hövel
,
I.
Omelchenko
, and
E.
Schöll
,
Nat. Phys.
8
,
658
661
(
2012
).
31.
J. D.
Hart
,
K.
Bansal
,
T. E.
Murphy
, and
R.
Roy
,
Chaos
26
,
094801
(
2016
).
32.
E. A.
Martens
,
S.
Thutupalli
,
A.
Fourrière
, and
O.
Hallatschek
,
Proc. Natl. Acad. Sci.
110
(
26
),
10563
10567
(
2013
).
33.
C. R.
Laing
,
Phys. Rev. E
92
(
5
),
050904
(
2015
).
34.
M. G.
Clerc
,
S.
Coulibaly
,
M. A.
Ferré
,
M. A.
García-Ñustes
, and
R. G.
Rojas
,
Phys. Rev. E
93
,
052204
(
2016
).
35.
M. G.
Clerc
,
M. A.
Ferré
,
S.
Coulibaly
,
R. G.
Rojas
, and
M.
Tlidi
,
Opt. Lett.
42
,
2906
2909
(
2017
).
36.
J.
Hizanidis
,
N.
Lazarides
, and
G. P.
Tsironis
,
Phys. Rev. E
94
,
032219
(
2016
).
37.
G. C.
Sethia
and
A.
Sen
,
Phys. Rev. Lett.
112
,
144101
(
2014
).
38.
A.
Yeldesbay
,
A.
Pikovsky
, and
M.
Rosenblum
,
Phys. Rev. Lett.
112
,
144103
(
2014
).
39.
C. R.
Hens
,
A.
Mishra
,
P. K.
Roy
,
A.
Sen
, and
S. K.
Dana
,
Pramana
84
,
229
235
(
2015
).
40.
P. D.
Woods
and
A. R.
Champneys
,
Physica D
129
,
147
170
(
1999
).
41.
J.
Burke
and
E.
Knobloch
,
Chaos
17
,
037102
(
2007
).
42.
D. M.
Abrams
,
R.
Mirollo
,
S. H.
Strogatz
, and
D. A.
Wiley
,
Phys. Rev. Lett.
101
(
8
),
084103
(
2008
).
45.
M. G.
Clerc
and
N.
Verschueren
,
Phys. Rev. E
88
,
052916
(
2013
).
46.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
2002
).
47.
M. G.
Clerc
,
R. G.
Elías
, and
R. G.
Rojas
,
Philos. Trans. Roy. Soc. Lond. Ser. A
369
(
1935
),
412
424
(
2011
).
48.
O. M.
Braun
and
Y. S.
Kivshar
,
The Frenkel-Kontorova Model: Concepts, Methods, and Applications
(
Springer
,
2013
).
49.
A.
Pikovsky
and
A.
Politi
,
Lyapunov Exponents: A Tool to Explore Complex Dynamics
(
Cambridge University
,
2016
).
50.
C.
h. Skokos
, “The Lyapunov characteristic exponents and their computation,”
Dynamics of Small Solar System Bodies and Exoplanets
(
Springer
,
2010
), pp.
63
135
.
51.
A.
Chowdhury
,
S.
Barbay
,
M. G.
Clerc
,
I.
Robert-Philip
, and
R.
Braive
,
Phys. Rev. Lett.
119
,
234101
(
2017
).
52.
R. M. C.
Mestrom
,
R. H. B.
Fey
,
J. T. M.
Van Beek
,
K. L.
Phan
, and
H.
 
Nijmeijer
,
Sens. Actuators A Phys.
142
,
306
(
2008
).
You do not currently have access to this content.