SBT memristor is a physical memristor built on Sr0.95Ba0.05TiO3 nanometer film, described by a deterministic flux-controlled mathematical model. A new physical SBT-memristor-based Chua’s circuit is presented in this paper, using the memristor to replace the Chua diode to connect with a negative conductance in parallel. The circuit can be well modeled by a fourth-order nonlinear system in the voltage-current domain and a third-order nonlinear system in the flux-charge domain, respectively. The dependences of the circuit stability on both the initial state value of the SBT memristor and the linear resistance in the circuit are analyzed theoretically, verified by numerical simulations, which shows that the circuit system has complex dynamics with multiple behaviors, including sink, periodic cycle, limit cycle, chaos, and some complicated transient dynamical behaviors. The new findings shed light on future research on the physical realization of the SBT-memristor-based Chua’s circuit and other similar devices.

1.
L. O.
Chua
, “
Memristor—The missing circuit element
,”
IEEE Trans. Circuit Theory
18
,
507
519
(
1971
).
2.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
, “
The missing memristor found
,”
Nature
453
,
80
83
(
2008
).
3.
Y.
Li
,
Y.
Zhong
,
J.
Xu
,
L.
Zhang
,
X.
Xu
,
H.
Sun
, and
X.
Miao
, “
Ultrafast synaptic events in a chalcogenide memristor
,”
Sci. Rep.
3
,
1619
(
2013
).
4.
S.
Lequeux
,
J.
Sampaio
,
V.
Cros
,
K.
Yakushiji
,
A.
Fukushima
,
R.
Matsumoto
,
H.
Kubota
,
S.
Yuasa
, and
J.
Grollier
, “
A magnetic synapse: Multilevel spin-torque memristor with perpendicular anisotropy
,”
Sci. Rep.
6
,
31510
(
2016
).
5.
Y.
Li
,
Y.
Zhong
,
L.
Xu
,
J.
Zhang
,
X.
Xu
,
H.
Sun
, and
X.
Miao
, “
Associative learning with temporal contiguity in a memristive circuit for large-scale neuromorphic networks
,”
Adv. Electron. Mater.
1
,
1171
1176
(
2015
).
6.
M.
Prezioso
,
F.
Merrikh-Bayat
,
B. D.
Hoskins
,
G. C.
Adam
,
K. K.
Likharev
, and
D. B.
Strukov
, “
Training and operation of an integrated neuromorphic network based on metal-oxide memristors
,”
Nature
521
,
61
64
(
2015
).
7.
X.
Huang
,
Y.
Fan
,
J.
Jia
,
Z.
Wang
, and
Y.
Li
, “
Quasi-synchronisation of fractional-order memristor-based neural networks with parameter mismatches
,”
IET Control Theory A
11
,
2317
2327
(
2017
).
8.
S. P.
Adhikari
,
H.
Kim
,
R. K.
Budhathoki
,
C.
Yang
, and
L. O.
Chua
, “
A circuit-based learning architecture for multilayer neural networks with memristor bridge synapses
,”
IEEE Trans. Circuits Syst. I Reg. Pap.
62
,
215
233
(
2015
).
9.
S.
Wen
,
Z.
Zeng
,
T.
Huang
, and
Y.
Zhang
, “
Exponential adaptive lag synchronization of memristive neural networks via fuzzy method and applications in pseudorandom number generators
,”
IEEE Trans. Fuzzy Syst.
22
,
1704
1713
(
2014
).
10.
Y.
Yang
,
J.
Mathew
,
S.
Pontarelli
,
M.
Ottavi
, and
D. K.
Pradhan
, “
Complementary resistive switch-based arithmetic logic implementations using material implication
,”
IEEE Trans. Nanotechnol.
15
,
94
108
(
2016
).
11.
Z. R.
Wang
,
Y. T.
Su
,
Y.
Li
,
Y. X.
Zhou
,
T. J.
Chu
,
K. C.
Chang
,
T. C.
Chang
,
T. M.
Tsai
,
S. M.
Sze
, and
X. S.
Miao
, “
Functionally complete boolean logic in 1T1R resistive random access memory
,”
IEEE Electron Device Lett.
38
,
179
182
(
2016
).
12.
Y.
Li
,
Y. X.
Zhou
,
L.
Xu
,
K.
Lu
,
Z. R.
Wang
,
N.
Duan
,
L.
Jiang
,
L.
Cheng
,
T. C.
 
Chang
,
K. C.
Chang
,
H. J.
Sun
,
K. H.
Xue
, and
X. S.
Miao
, “
Realization of functional complete stateful boolean logic in memristive crossbar
,”
ACS Appl. Mater. Interfaces
8
,
34559
(
2016
).
13.
Y. X.
Zhou
,
Y.
Li
,
Y. T.
Su
,
Z. R.
Wang
,
L. Y.
Shih
,
T. C.
Chang
,
K. C.
Chang
,
S. B.
Long
,
S. M.
Sze
, and
X. S.
Miao
, “
Nonvolatile reconfigurable sequential logic in a HfO2 resistive random access memory array
,”
Nanoscale
9
,
6649
6657
(
2017
).
14.
K. C.
Rahman
,
D.
Hammerstrom
,
Y.
Li
,
H.
Castagnaro
, and
M. A.
Perkowski
, “
Methodology and design of a massively parallel memristive stateful imply logic-based reconfigurable architecture
,”
IEEE Trans. Nanotechnol.
15
,
675
686
(
2016
).
15.
Y.
Zhou
,
Y.
Li
,
L.
Xu
,
S.
Zhong
,
H.
Sun
, and
X.
Miao
, “
16 boolean logics in three steps with two anti-serially connected memristors
,”
Appl. Phys. Lett.
206
,
233502
(
2015
).
16.
M.
Iton
and
L. O.
Chua
, “
Memristor oscillators
,”
Int. J. Bifurcat. Chaos
18
,
3183
(
2008
).
17.
Y.
Li
,
X.
Huang
, and
M.
Guo
, “
The generation, analysis, and circuit implementation of a new memristor based chaotic system
,”
Math. Probl. Eng.
2013
,
398306
(
2013
).
18.
B. C.
Bao
,
J. P.
Xu
,
G. H.
Zhou
,
Z. H.
Ma
, and
L.
Zou
, “
Chaotic memristive circuit: Equivalent circuit realization and dynamical analysis
,”
Chin. Phys. B
20
,
109
115
(
2011
).
19.
G. Y.
Wang
,
J. L.
He
,
E.
Yuan
, and
C. J.
Peng
, “
Dynamical behaviors of a TiO2 memristor oscillator
,”
Chin. Phys. Lett.
30
,
468
477
(
2013
).
20.
V. H.
Nguyen
,
S.
Nam
,
B.
Kim
,
K. Y.
Sohn
, and
H.
Song
, “
Variable cubic-polynomial memristor based canonical Chua’s chaotic circuit
,”
IEICE Electron. Expr.
13
,
20150987
(
2016
).
21.
Q.
Xu
,
Y.
Lin
,
B. C.
Bao
, and
M.
Chen
, “
Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit
,”
Chaos Solitons Fractals
83
,
186
200
(
2016
).
22.
M.
Chen
,
M.
Li
,
Q.
Yu
,
B.
Bao
,
Q.
Xu
, and
J.
Wang
, “
Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit
,”
Nonlinear Dyn.
81
,
215
226
(
2015
).
23.
Q.
Xu
,
N.
Wang
,
B. C.
Bao
,
M.
Chen
, and
C.
Li
, “
A feasible memristive Chua’s circuit via bridging a generalized memristor
,”
J. Appl. Anal. Comput.
6
,
1152
1163
(
2016
).
24.
M.
Chen
,
J.
Yu
, and
B. C.
Bao
, “
Finding hidden attractors in improved memristor-based Chua’s circuit
,”
Electron. Lett.
51
,
462
464
(
2015
).
25.
B. C.
Bao
,
J. P.
Xu
, and
J. P.
Xu
, “
Steady periodic memristor oscillator with transient chaotic behaviours
,”
Electron. Lett.
46
,
237
238
(
2010
).
26.
A. L.
Fitch
,
D.
Yu
,
H. H. C.
IU
, and
V.
Sreeram
, “
Hyperchaos in a memristor-based modified canonical Chua’s circuit
,”
Int. J. Bifurcat. Chaos
22
,
1250133
(
2012
).
27.
B. C.
Bao
,
P.
jiang
,
H.
Wu
, and
F.
Hu
, “
Complex transient dynamics in periodically forced memristive Chua’s circuit
,”
Chin. Phys. B
79
,
2333
2343
(
2015
).
28.
A. I.
Ahamed
and
M.
Lakshmanan
, “
Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive MURALI- LAKSHMANAN-CHUA circuit
,”
Int. J. Bifurcat. Chaos
2
,
1350098
(
2013
).
29.
B.
Muthuswamy
and
L. O.
Chua
, “
Simplest chaotic circuit
,”
Int. J. Bifurcat. Chaos
20
,
1567
(
2010
).
30.
F.
Yuan
,
G.
Wang
, and
X.
Wang
, “
Dynamical characteristics of an HP memristor based on an equivalent circuit model in a chaotic oscillator
,”
Chin. Phys. B
24
,
207
215
(
2015
).
31.
G.
Wang
,
M.
Cui
,
B.
Cai
,
X.
Wang
, and
T.
Hu
, “
A chaotic oscillator based on HP memristor model
,”
Math. Problems Eng.
2015
,
1
12
(
2015
).
32.
Y.
Li
and
G.
Dou
, “
Towards the implementation of memristor: A study of the electric properties of Ba0.77Sr0.23TiO3 material
,”
Int. J. Bifurcat. Chaos
23
,
1350204
(
2013
).
33.
G.
Dou
,
Y.
Yu
,
M.
Guo
,
Y.
Zhang
,
Z.
Sun
, and
Y.
Li
, “
Memristive behavior based on Ba-Doped SrTiO3 films
,”
Chin. Phys. Lett.
34
,
038502
(
2017
).
34.
Y.
Zhang
,
G.
Dou
,
Z.
Sun
,
M.
Guo
, and
Y.
Li
, “
Establishment of physical and mathematical models for Sr0.95Ba0.05TiO3 memristor
,”
Int. J. Bifurcat. Chaos
27
,
1750148
(
2017
).
35.
F.
Corinto
and
M.
Forti
, “
Memristor circuits: Flux-charge analysis method
,”
IEEE Trans. Circuits Syst. I Reg. Pap.
63
,
1997
2009
(
2016
).
You do not currently have access to this content.