We investigate searching for multiple mobile objects on networks and introduce the concept of mean random search time (MRST) to quantify the expected time a searcher takes to capture moving targets specified in advance. We consider this quantity averaged over all initial conditions for a searcher and multiple targets called the global MRST. We find that the growth of global MRST follows a recursive harmonic law with respect to that of stalking the individuals. In particular, when the diffusive laws of moving targets are identical, the global MRST shows a logarithmic increase with the number of moving targets. Moreover, utilizing the recursive harmonic law, we can accurately predict the expected successive time interval for capturing a new moving target. The recursive harmonic law unveils the underlying mechanism governing the search time when hunting for multiple moving targets on networks.

1.
A.-L.
Barabási
,
Network Science
(
Cambridge University Press
,
2016
).
2.
J. D.
Noh
and
H.
Rieger
, “
Random walks on complex networks
,”
Phys. Rev. Lett.
92
,
118701
(
2004
).
3.
J. H.
Peng
,
E.
Agliari
, and
Z. Z.
Zhang
, “
Exact calculations of first-passage properties on the pseudofractal scale-free web
,”
Chaos
25
,
073118
(
2015
).
4.
T. F.
Weng
,
J.
Zhang
,
M.
Khajehnejad
,
M.
Small
,
R.
Zheng
, and
P.
Hui
, “
Navigation by anomalous random walks on complex networks
,”
Sci. Rep.
6
,
37547
(
2016
).
5.
A. L.
Lloyd
and
R. M.
May
, “
How viruses spread among computers and people
,”
Science
292
,
1316
1317
(
2001
).
6.
G. M.
Viswanathan
,
M. G. E.
da Luz
,
E. P.
Raposo
, and
H. E.
Stanley
,
The Physics of Foraging: An Introduction to Random Searches and Biological Encounters
(
Cambridge University Press
,
2011
).
7.
M. C.
González
,
C. A.
Hidalgo
, and
A. L.
Barabási
, “
Understanding individual human mobility patterns
,”
Nature (London)
453
,
779
782
(
2008
).
8.
N.
Perra
,
A.
Baronchelli
,
D.
Mocanu
,
B.
Goncalves
,
R.
Pastor-Satorras
, and
A.
Vespignani
, “
Random walks and search in time-varying networks
,”
Phys. Rev. Lett.
109
,
238701
(
2012
).
9.
F.
Battiston
,
V.
Nicosia
, and
V.
Latora
, “
Efficient exploration of multiplex networks
,”
New J. Phys.
18
,
043035
(
2016
).
10.
Z. Z.
Zhang
,
Y.
Sheng
,
Z. Y.
Hu
, and
G. R.
Chen
, “
Optimal and suboptimal networks for efficient navigation measured by mean first passage time of random walks
,”
Chaos
22
,
043129
(
2012
).
11.
T.
Guérin
,
N.
Levernier
,
O.
Bénichou
, and
R.
Voituriez
, “
Mean first passage times of non-Markovian random walkers in confinement
,”
Nature (London)
534
,
356
359
(
2016
).
12.
M.
Schwarzl
,
A.
Godec
,
G.
Oshanin
, and
R.
Metzler
, “
A single predator charging a herb of prey: Effects of self volume and predator-prey decision-making
,”
J. Phys. A
49
,
225601
(
2016
).
13.
E.
Agliari
,
R.
Burioni
,
D.
Cassi
, and
F. M.
Neri
, “
Autocatalytic reaction on low-dimensional substrates
,”
Theor. Chem. Acc.
118
,
855
862
(
2007
).
14.
E.
Agliari
,
D.
Cassi
,
L.
Cattivelli
, and
F.
Sartori
, “
Two particle problem in comblike structures
,”
Phys. Rev. E
93
,
052111
(
2016
).
15.
L. M.
Pereira
, “
Fractal pharmacokinetics
,”
Comput. Math. Methods Med.
11
,
161
184
(
2010
).
16.
E.
Agliari
,
R.
Burioni
,
D.
Cassi
, and
F.
Neri
, “
Word of mouth and dynamical inhomogeneous markets: An efficiency measure and optimal sampling policies for the pre-launch stage
,”
IMA J. Manag. Math.
21
,
67
(
2010
).
17.
E.
Agliari
,
R.
Burioni
,
D.
Cassi
, and
F.
Neri
, “
Universal features of information spreading efficiency on d-dimensional lattices
,”
Phys. Rev. E
75
,
021119
(
2007
).
18.
T. F.
Weng
,
M.
Small
,
J.
Zhang
, and
P.
Hui
, “
Hunting for a moving target on a complex network
,”
Europhys. Lett.
119
,
48006
(
2017
).
19.
C. C.
Hass
, “
Social status in female bighorn sheep (Ovis canadensis): expression, development and reproductive correlates
,”
J. Zool.
225
,
509
523
(
1991
).
20.
E.
Agliari
,
R.
Burioni
,
D.
Cassi
, and
F.
Neri
, “
Efficiency of information spreading in a population of diffusing agents
,”
Phys. Rev. E
73
,
046138
(
2006
).
21.
A.-L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
,
509
512
(
1999
).
22.
P.
Erdos
and
A.
Rényi
, “
On the evolution of random graphs
,”
Publ. Math. Inst. Hung. Acad. Sci.
5
,
17
60
(
1960
).
23.
L. C.
Freeman
,
S. C.
Freeman
, and
A. G.
Michaelson
, “
On human social intelligence
,”
J. Soc. Biol. Struct.
11
,
415
425
(
1988
).
24.
A.
Chaintreau
,
P.
Hui
,
J.
Crowcroft
,
C.
Diot
,
R.
Gass
, and
J.
Scott
, “
Impact of human mobility on opportunistic forwarding algorithms
,”
IEEE Trans. Mob. Comput.
6
,
606
620
(
2007
).
25.
R. E.
Ulanowicz
and
D. L.
DeAngelis
, “Network analysis of trophic dynamics in South Florida ecosystems,” U. S. Geological Survey Program on the South Florida Ecosystems 114, 2005.
26.
S. N.
Dorogovtsev
,
A. V.
Goltsev
, and
J. F. F.
Mendes
, “
Critical phenomena in complex networks
,”
Rev. Mod. Phys.
80
,
1275
1335
(
2008
).
27.
J.
Sherman
and
W. J.
Morrison
, “
Adjustment of an inverse matrix corresponding to a change in one element of a given matrix
,”
Ann. Math. Stat.
21
,
124
127
(
1950
).
28.
A.
Fronczak
and
P.
Fronczak
, “
Biased random walks in complex networks: The role of local navigation rules
,”
Phys. Rev. E
80
,
016107
(
2009
).
29.
T. F.
Weng
,
J.
Zhang
,
M.
Small
, and
P.
Hui
, “
Multiple random walks on complex networks: A harmonic law predicts search time
,”
Phys. Rev. E
95
,
052103
(
2017
).
30.
I. G.
Portillo
,
D.
Campos
, and
V.
Méndez
, “
Intermittent random walks: Transport regimes and implications on search strategies
,”
J. Stat. Mech.
2
,
P02033
(
2011
).
31.
D. I.
Tsomokos
, “
Quantum walks on complex networks with connection instabilities and community structure
,”
Phys. Rev. A
83
,
052315
(
2011
).
32.
P.
Erdos
and
A.
Rényi
, “
On a classical problem of probability theory
,”
Magyar Tud. Akad. Mat. Kutato Int. Kozl.
6
,
215
220
(
1961
).
33.
A. N.
Myers
and
H. S.
Wilf
, “
Some new aspects of the coupon collector’s problem
,”
SIAM Rev.
48
,
549
565
(
2006
).
34.
T. F.
Weng
,
J.
Zhang
,
M.
Small
,
J.
Yang
,
F. H.
Bijarbooneh
, and
P.
Hui
, “
Multitarget search on complex networks: A logarithmic growth of global mean random cover time
,”
Chaos
27
,
093103
(
2017
).
You do not currently have access to this content.