Studies regarding knowledge organization and acquisition are of great importance to understand areas related to science and technology. A common way to model the relationship between different concepts is through complex networks. In such representations, networks’ nodes store knowledge and edges represent their relationships. Several studies that considered this type of structure and knowledge acquisition dynamics employed one or more agents to discover node concepts by walking on the network. In this study, we investigate a different type of dynamics adopting a single node as the “network brain.” Such a brain represents a range of real systems such as the information about the environment that is acquired by a person and is stored in the brain. To store the discovered information in a specific node, the agents walk on the network and return to the brain. We propose three different dynamics and test them on several network models and on a real system, which is formed by journal articles and their respective citations. The results revealed that, according to the adopted walking models, the efficiency of self-knowledge acquisition has only a weak dependency on topology and search strategy.

1.
T.
Stonier
, “
Information as a basic property of the universe
,”
Biosystems
38
,
135
140
(
1996
).
2.
R.
Pastor-Satorras
and
A.
Vespignani
, “
Epidemic spreading in scale-free networks
,”
Phys. Rev. Lett.
86
,
3200
(
2001
).
3.
Y.
Moreno
,
M.
Nekovee
, and
A. F.
Pacheco
, “
Dynamics of rumor spreading in complex networks
,”
Phys. Rev. E
69
,
066130
(
2004
).
4.
R.
Pastor-Satorras
,
C.
Castellano
,
P.
Van Mieghem
, and
A.
Vespignani
, “
Epidemic processes in complex networks
,”
Rev. Mod. Phys.
87
,
925
(
2015
).
5.
B.
Danila
,
Y.
Yu
,
J. A.
Marsh
, and
K. E.
Bassler
, “
Optimal transport on complex networks
,”
Phys. Rev. E
74
,
046106
(
2006
).
6.
M.
Markosova
, “
Network model of human language
,”
Phys. A: Stat. Mech. Appl.
387
,
661
666
(
2008
).
7.
D. R.
Amancio
, “
Probing the topological properties of complex networks modeling short written texts
,”
PLoS ONE
10
,
e0118394
(
2015
).
8.
H. F.
de Arruda
,
L.
da F. Costa
, and
D. R.
Amancio
, “
Topic segmentation via community detection in complex networks
,”
Chaos: Interdiscip. J. Nonlinear Sci.
26
,
063120
(
2016
).
9.
E.
Bullmore
and
O.
Sporns
, “
Complex brain networks: Graph theoretical analysis of structural and functional systems
,”
Nat. Rev. Neurosci.
10
,
186
198
(
2009
).
10.
H. F.
de Arruda
,
F. N.
Silva
,
C. H.
Comin
,
D. R.
Amancio
, and
L.
d. F. Costa
, “
Connecting network science and information theory
,” preprint arXiv:1704.03091v2 (
2017
).
11.
H. F.
de Arruda
,
F. N.
Silva
,
L. da F.
Costa
, and
D. R.
Amancio
, “
Knowledge acquisition: A complex networks approach
,”
Inf. Sci.
421
,
154
166
(
2017
).
12.
G.
Yan
,
T.
Zhou
,
B.
Hu
,
Z.-Q.
Fu
, and
B.-H.
Wang
, “
Efficient routing on complex networks
,”
Phys. Rev. E
73
,
046108
(
2006
).
13.
M.
Boguna
,
D.
Krioukov
, and
K. C.
Claffy
, “
Navigability of complex networks
,”
Nat. Phys.
5
,
74
(
2009
).
14.
S.
Lee
,
S.-H.
Yook
, and
Y.
Kim
, “
Searching method through biased random walks on complex networks
,”
Phys. Rev. E
80
,
017102
(
2009
).
15.
Y.
Kim
,
S.
Park
, and
S.-H.
Yook
, “
Network exploration using true self-avoiding walks
,”
Phys. Rev. E
94
,
042309
(
2016
).
16.
C.
Castellano
,
S.
Fortunato
, and
V.
Loreto
, “
Statistical physics of social dynamics
,”
Rev. Mod. Phys.
81
,
591
(
2009
).
17.
N. J.
McCullen
,
A. M.
Rucklidge
,
C. S.
Bale
,
T. J.
Foxon
, and
W. F.
Gale
, “
Multiparameter models of innovation diffusion on complex networks
,”
SIAM. J. Appl. Dyn. Syst.
12
,
515
532
(
2013
).
18.
K.
Pearson
, “
The problem of the random walk
,”
Nature
72
,
342
(
1905
).
19.
L.
Rayleigh
, “
The problem of the random walk
,”
Nature
72
,
318
(
1905
).
20.
E.
Agirre
and
A.
Soroa
, “
Personalizing pagerank for word sense disambiguation
,” in
Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics
(
Association for Computational Linguistics
,
2009
), pp.
33
41
.
21.
M.
Rosvall
and
C. T.
Bergstrom
, “
Maps of random walks on complex networks reveal community structure
,”
Proc. Natl. Acad. Sci.
105
,
1118
1123
(
2008
).
22.
N.
Masuda
,
M. A.
Porter
, and
R.
Lambiotte
, “
Random walks and diffusion on networks
,”
Phys. Rep.
716–717
,
1
58
(
2017
).
23.
D. R.
Amancio
, “
Comparing the topological properties of real and artificially generated scientific manuscripts
,”
Scientometrics
105
,
1763
1779
(
2015
).
24.
N.
Craswell
and
M.
Szummer
, “
Random walks on the click graph
,” in
Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
(
ACM
,
2007
), pp.
239
246
.
25.
L.
Grady
, “
Random walks for image segmentation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
28
,
1768
1783
(
2006
).
26.
N.
Duhan
,
A.
Sharma
, and
K. K.
Bhatia
, “
Page ranking algorithms: A survey
,” in
IEEE International Advance Computing Conference, 2009. IACC 2009
(
IEEE
,
2009
), pp.
1530
1537
.
27.
L.
Page
,
S.
Brin
,
R.
Motwani
, and
T.
Winograd
, “
The pagerank citation ranking: Bringing order to the web.
” Technical Report (
Stanford InfoLab
,
1999
).
28.
U.
Feige
, “
A tight upper bound on the cover time for random walks on graphs
,”
Random Struct. Algorithms
6
,
51
54
(
1995
).
29.
P.
Erdos
and
A.
Rényi
, “
On the evolution of random graphs
,”
Publ. Math. Inst. Hung. Acad. Sci.
5
,
17
60
(
1960
).
30.
A.-L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
,
509
512
(
1999
).
31.
M. E.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
,
167
256
(
2003
).
32.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of small-world networks
,”
Nature
393
,
440
442
(
1998
).
33.
B. M.
Waxman
, “
Routing of multipoint connections
,”
IEEE J. Sel. Areas Commun.
6
,
1617
1622
(
1988
).
34.
V.
Batagelj
,
A.
Mrvar
,
A.
Ferligoj
, and
P.
Doreian
, “
Generalized blockmodeling with Pajek
,”
Metodoloski zvezki
1
,
455
(
2004
).
35.
P. W.
Holland
,
K. B.
Laskey
, and
S.
Leinhardt
, “
Stochastic blockmodels: First steps
,”
Soc. Networks
5
,
109
137
(
1983
).
36.
See See http://www.webofscience.com for access to the dataset of papers and respective references.
37.
J. M.
Kleinberg
, “
Authoritative sources in a hyperlinked environment
,”
J. ACM
46
,
604
632
(
1999
).
38.
A. N.
Langville
and
C. D.
Meyer
, “
A reordering for the pagerank problem
,”
SIAM J. Sci. Comput.
27
,
2112
2120
(
2006
).
39.
F. N.
Silva
,
D. R.
Amancio
,
M.
Bardosova
,
L. da F.
Costa
, and
O. N.
Oliveira Jr
, “
Using network science and text analytics to produce surveys in a scientific topic
,”
J. Informetr.
10
,
487
502
(
2016
).
40.
B. A. N.
Travençolo
and
L. d. F.
Costa
, “
Accessibility in complex networks
,”
Phys. Lett. A
373
,
89
95
(
2008
).
41.
I. T.
Koponen
and
M.
Nousiainen
, “
Modelling students’ knowledge organisation: Genealogical conceptual networks
,”
Phys. A: Stat. Mech. Appl.
495
,
405
417
(
2018
).
42.
I. T.
Koponen
and
M.
Nousiainen
, “
Concept networks in learning: Finding key concepts in learners’ representations of the interlinked structure of scientific knowledge
,”
J. Complex Netw.
2
,
187
202
(
2014
).
43.
I.
Iacopini
,
S.
Milojevic
, and
V.
Latora
, “
Network dynamics of innovation processes
,”
Phys. Rev. Lett.
120
,
048301
(
2018
).
44.
M.
Lin
and
N.
Li
, “
Scale-free network provides an optimal pattern for knowledge transfer
,”
Phys. A: Stat. Mech. Appl.
389
,
473
480
(
2010
).
45.
B.
Cao
,
S.
hua Han
, and
Z.
Jin
, “
Modeling of knowledge transmission by considering the level of forgetfulness in complex networks
,”
Phys. A: Stat. Mech. Appl.
451
,
277
287
(
2016
).
46.
H.-M.
Zhu
,
S.-T.
Zhang
, and
Z.
Jin
, “
The effects of online social networks on tacit knowledge transmission
,”
Phys. A: Stat. Mech. Appl.
441
,
192
198
(
2016
).
47.
H.
Wang
,
J.
Wang
,
L.
Ding
, and
W.
Wei
, “
Knowledge transmission model with consideration of self-learning mechanism in complex networks
,”
Appl. Math. Comput.
304
,
83
92
(
2017
).
48.
X.
Chen
,
X.
Xiong
,
M.
Zhang
, and
W.
Li
, “
Public authority control strategy for opinion evolution in social networks
,”
Chaos: Interdiscip. J. Nonlinear Sci.
26
,
083105
(
2016
).
49.
L.
Yin
,
L.-C.
Shi
,
J.-Y.
Zhao
,
S.-Y.
Du
,
W.-B.
Xie
,
F.
Yuan
, and
D.-B.
Chen
, “
Heterogeneous information network model for equipment-standard system
,”
Phys. A: Stat. Mech. Appl.
490
,
935
943
(
2018
).
50.
H.-L.
Zhou
and
X.-D.
Zhang
, “
Dynamic robustness of knowledge collaboration network of open source product development community
,”
Phys. A: Stat. Mech. Appl.
490
,
601
612
(
2018
).
51.
F.
Breve
,
L.
Zhao
,
M.
Quiles
,
W.
Pedrycz
, and
J.
Liu
, “
Particle competition and cooperation in networks for semi-supervised learning
,”
IEEE Trans. Knowl. Data Eng.
24
,
1686
1698
(
2012
).
52.
D. R.
Amancio
,
O. N.
Oliveira Jr.
, and
L. da F.
Costa
, “
Structure-semantics interplay in complex networks and its effects on the predictability of similarity in texts
,”
Phys. A: Stat. Mech. Appl.
391
,
4406
4419
(
2012
).
53.
D. R.
Amancio
, “
A complex network approach to stylometry
,”
PLoS ONE
10
,
e0136076
(
2015
).
54.
H.
Chen
,
X.
Chen
, and
H.
Liu
, “
How does language change as a lexical network? An investigation based on written chinese word co-occurrence networks
,”
PLoS ONE
13
,
e0192545
(
2018
).
55.
K. C.
Chen
,
M.
Chiang
, and
H. V.
Poor
, “
From technological networks to social networks
,”
IEEE J. Sel. Areas Commun.
31
,
548
572
(
2013
).
56.
R.
Pemantle
et al., “
A survey of random processes with reinforcement
,”
Probab. Surv.
4
,
1
79
(
2007
).
57.
M.
Kitsak
,
L. K.
Gallos
,
S.
Havlin
,
F.
Liljeros
,
L.
Muchnik
,
H. E.
Stanley
, and
H. A.
Makse
, “
Identification of influential spreaders in complex networks
,”
Nat. Phys.
6
,
888
(
2010
).

Supplementary Material

You do not currently have access to this content.