Low-dimensional yet rich dynamics often emerge in the brain. Examples include oscillations and chaotic dynamics during sleep, epilepsy, and voluntary movement. However, a general mechanism for the emergence of low dimensional dynamics remains elusive. Here, we consider Wilson-Cowan networks and demonstrate through numerical and analytical work that homeostatic regulation of the network firing rates can paradoxically lead to a rich dynamical repertoire. The dynamics include mixed-mode oscillations, mixed-mode chaos, and chaotic synchronization when the homeostatic plasticity operates on a moderately slower time scale than the firing rates. This is true for a single recurrently coupled node, pairs of reciprocally coupled nodes without self-coupling, and networks coupled through experimentally determined weights derived from functional magnetic resonance imaging data. In all cases, the stability of the homeostatic set point is analytically determined or approximated. The dynamics at the network level are directly determined by the behavior of a single node system through synchronization in both oscillatory and non-oscillatory states. Our results demonstrate that rich dynamics can be preserved under homeostatic regulation or even be caused by homeostatic regulation.

1.
Babloyantz
,
A.
and
Destexhe
,
A.
, “
Low-dimensional chaos in an instance of epilepsy
,”
Proc. Natl. Acad. Sci.
83
(
10
),
3513
3517
(
1986
).
2.
Bacci
,
A.
,
Coco
,
S.
,
Pravettoni
,
E.
,
Schenk
,
U.
,
Armano
,
S.
,
Frassoni
,
C.
,
Verderio
,
C.
,
De Camilli
,
P.
, and
Matteoli
,
M.
, “
Chronic blockade of glutamate receptors enhances presynaptic release and downregulates the interaction between synaptophysin-synaptobrevin–vesicle-associated membrane protein 2
,”
J. Neurosci.
21
(
17
),
6588
6596
(
2001
).
3.
Benda
,
J.
and
Herz
,
A. V.
, “
A universal model for spike-frequency adaptation
,”
Neural Comput.
15
(
11
),
2523
2564
(
2003
).
4.
Bienenstock
,
E. L.
,
Cooper
,
L. N.
, and
Munro
,
P. W.
, “
Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex
,”
J. Neurosci.
2
(
1
),
32
48
(
1982
).
5.
Brunel
,
N.
, “
Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
,”
J. Comput. Neurosci.
8
(
3
),
183
208
(
2000
).
6.
Buzsáki
,
G.
, “
Theta oscillations in the hippocampus
,”
Neuron
33
(
3
),
325
340
(
2002
).
7.
Buzsáki
,
G.
,
Anastassiou
,
C. A.
, and
Koch
,
C.
, “
The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes
,”
Nat. Rev. Neurosci.
13
(
6
),
407
420
(
2012
).
8.
Buzsáki
,
G.
and
Wang
,
X.-J.
, “
Mechanisms of gamma oscillations
,”
Annu. Rev. Neurosci.
35
,
203
225
(
2012
).
9.
Churchland
,
M. M.
,
Cunningham
,
J. P.
,
Kaufman
,
M. T.
,
Foster
,
J. D.
,
Nuyujukian
,
P.
,
Ryu
,
S. I.
, and
Shenoy
,
K. V.
, “
Neural population dynamics during reaching
,”
Nature
487
(
7405
),
51
56
(
2012
).
10.
Coombes
,
S.
,
Lai
,
Y. M.
,
Şayli
,
M.
, and
Thul
,
R.
, “
Networks of piecewise linear neural mass models
,”
Eur. J. Appl. Math.
1
22
(
2018
).
11.
Desroches
,
M.
,
Guckenheimer
,
J.
,
Krauskopf
,
B.
,
Kuehn
,
C.
,
Osinga
,
H. M.
, and
Wechselberger
,
M.
, “
Mixed-mode oscillations with multiple time scales
,”
SIAM Rev.
54
(
2
),
211
288
(
2012
).
12.
Frank
,
C. A.
,
Kennedy
,
M. J.
,
Goold
,
C. P.
,
Marek
,
K. W.
, and
Davis
,
G. W.
, “
Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis
,”
Neuron
52
(
4
),
663
677
(
2006
).
13.
Froemke
,
R. C.
,
Merzenich
,
M. M.
, and
Schreiner
,
C. E.
, “
A synaptic memory trace for cortical receptive field plasticity
,”
Nature
450
(
7168
),
425
429
(
2007
).
14.
Guckenheimer
,
J.
and
Holmes
,
P.
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(
Springer Science & Business Media
,
2013
), Vol. 42
15.
Hagmann
,
P.
,
Cammoun
,
L.
,
Gigandet
,
X.
,
Meuli
,
R.
,
Honey
,
C. J.
,
Wedeen
,
V. J.
, and
Sporns
,
O.
, “
Mapping the structural core of human cerebral cortex
,”
PLoS Biol.
6
(
7
),
e159
(
2008
).
16.
Harnack
,
D.
,
Pelko
,
M.
,
Chaillet
,
A.
,
Chitour
,
Y.
, and
van Rossum
,
M. C.
, “
Stability of neuronal networks with homeostatic regulation
,”
PLoS Comput. Biol.
11
(
7
),
e1004357
(
2015
).
17.
Harris
,
J.
and
Ermentrout
,
B.
, “
Bifurcations in the wilson–cowan equations with nonsmooth firing rate
,”
SIAM. J. Appl. Dyn. Syst.
14
(
1
),
43
72
(
2015
).
18.
Hauser
,
M. J.
and
Olsen
,
L. F.
, “
Mixed-mode oscillations and homoclinic chaos in an enzyme reaction
,”
J. Chem. Soc. Faraday Trans.
92
(
16
),
2857
2863
(
1996
).
19.
Hellyer
,
P. J.
,
Jachs
,
B.
,
Clopath
,
C.
and
Leech
,
R.
, “
Local inhibitory plasticity tunes macroscopic brain dynamics and allows the emergence of functional brain networks
,”
NeuroImage
124
,
85
95
(
2016
).
20.
Honey
,
C.
,
Sporns
,
O.
,
Cammoun
,
L.
,
Gigandet
,
X.
,
Thiran
,
J.-P.
,
Meuli
,
R.
, and
Hagmann
,
P.
, “
Predicting human resting-state functional connectivity from structural connectivity
,”
Proc. Natl. Acad. Sci.
106
(
6
),
2035
2040
(
2009
).
21.
Koper
,
M. T.
, “
Bifurcations of mixed-mode oscillations in a three-variable autonomous van der pol-duffing model with a cross-shaped phase diagram
,”
Phys. D: Nonlin. Phenom.
80
(
1-2
),
72
94
(
1995
).
22.
Krupa
,
M.
,
Popović
,
N.
, and
Kopell
,
N.
, “
Mixed-mode oscillations in three time-scale systems: A prototypical example
,”
SIAM J. Appl. Dyn. Syst.
7
(
2
),
361
420
(
2008
).
23.
Krupa
,
M.
and
Szmolyan
,
P.
, “
Relaxation oscillation and canard explosion
,”
J. Differ. Equ.
174
(
2
),
312
368
(
2001
).
24.
Krupa
,
M.
and
Wechselberger
,
M.
, “
Local analysis near a folded saddle-node singularity
,”
J. Differ. Equ.
248
(
12
),
2841
2888
(
2010
).
25.
Kuznetsov
,
Y. A.
,
Elements of Applied Bifurcation Theory
(
Springer Science & Business Media
,
2013
), Vol. 112.
26.
Litwin-Kumar
,
A.
and
Doiron
,
B.
, “
Slow dynamics and high variability in balanced cortical networks with clustered connections
,”
Nat. Neurosci.
15
(
11
),
1498
(
2012
).
27.
Lorenz
,
E. N.
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
(
2
),
130
141
(
1963
).
28.
Macleod
,
G. T.
and
Zinsmaier
,
K. E.
, “
Synaptic homeostasis on the fast track
,”
Neuron
52
(
4
),
569
571
(
2006
).
29.
Markram
,
H.
and
Tsodyks
,
M.
, “
Redistribution of synaptic efficacy between neocortical pyramidal neurons
,”
Nature
382
(
6594
),
807
(
1996
).
30.
Nicola
,
W.
and
Campbell
,
S. A.
, “
Nonsmooth bifurcations of mean field systems of two-dimensional integrate and fire neurons
,”
SIAM J. Appl. Dyn. Syst.
15
(
1
),
391
439
(
2016
).
31.
Pecora
,
L. M.
and
Carroll
,
T. L.
, “
Synchronization in chaotic systems
,”
Phys. Rev. Lett.
64
(
8
),
821
(
1990
).
32.
Pfister
,
J.-P.
and
Gerstner
,
W.
, “
Triplets of spikes in a model of spike timing-dependent plasticity
,”
J. Neurosci.
26
(
38
),
9673
9682
(
2006
).
33.
Sprott
,
J. C.
and
Sprott
,
J. C.
,
Chaos and Time-Series Analysis
(
Oxford University Press
,
Oxford
,
2003
), Vol. 69.
34.
Stevens
,
C. F.
and
Wang
,
Y.
, “
Facilitation and depression at single central synapses
,”
Neuron
14
(
4
),
795
802
(
1995
).
35.
Strogatz
,
S. H.
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
(
Hachette
,
UK
,
2014
).
36.
Turrigiano
,
G. G.
,
Leslie
,
K. R.
,
Desai
,
N. S.
,
Rutherford
,
L. C.
, and
Nelson
,
S. B.
, “
Activity-dependent scaling of quantal amplitude in neocortical neurons
,”
Nature
391
(
6670
),
892
896
(
1998
).
37.
Turrigiano
,
G. G.
and
Nelson
,
S. B.
, “
Homeostatic plasticity in the developing nervous system
,”
Nat. Rev. Neurosci.
5
(
2
),
97
107
(
2004
).
38.
Udeigwe
,
L. C.
,
Munro
,
P. W.
, and
Ermentrout
,
G. B.
, “
Emergent dynamical properties of the BCM learning rule
,”
J. Math. Neurosci.
7
(
1
),
2
(
2017
).
39.
Van Veen
,
L.
and
Liley
,
D. T.
, “
Chaos via Shilnikov’s saddle-node bifurcation in a theory of the electroencephalogram
,”
Phys. Rev. Lett.
97
(
20
),
208101
(
2006
).
40.
Vo
,
T.
and
Wechselberger
,
M.
, “
Canards of folded saddle-node type i
,”
SIAM J. Math. Anal.
47
(
4
),
3235
3283
(
2015
).
41.
Vogels
,
T. P.
,
Sprekeler
,
H.
,
Zenke
,
F.
,
Clopath
,
C.
, and
Gerstner
,
W.
, “
Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks
,”
Science
334
(
6062
),
1569
1573
(
2011
).
42.
Wechselberger
,
M.
, “
Existence and bifurcation of canards in R3 in the case of a folded node
,”
SIAM J. Appl. Dyn. Syst.
4
(
1
),
101
139
(
2005
).
43.
Wiggins
,
S.
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
(
Springer Science & Business Media
,
2003
), Vol. 2.
44.
Wilson
,
H. R.
and
Cowan
,
J. D.
, “
Excitatory and inhibitory interactions in localized populations of model neurons
,”
Biophys. J.
12
(
1
),
1
24
(
1972
).
45.
Zenke
,
F.
,
Hennequin
,
G.
, and
Gerstner
,
W.
, “
Synaptic plasticity in neural networks needs homeostasis with a fast rate detector
,”
PLoS Comput. Biol.
9
(
11
),
e1003330
(
2013
).
You do not currently have access to this content.