Electroencephalography (EEG) signals depict the electrical activity that takes place at the surface of the brain and provide an important tool for understanding a variety of cognitive processes. The EEG is the product of synchronized activity of the brain, and variations in EEG oscillations patterns reflect the underlying changes in neuronal synchrony. Our aim is to characterize the complexity of the EEG rhythmic oscillations bands when the subjects perform a visuomotor or imagined cognitive tasks (imagined movement), providing a causal mapping of the dynamical rhythmic activities of the brain as a measure of attentional investment. We estimate the intrinsic correlational structure of the signals within the causality entropy-complexity plane H×C, where the enhanced complexity in the gamma 1, gamma 2, and beta 1 bands allows us to distinguish motor-visual memory tasks from control conditions. We identify the dynamics of the gamma 1, gamma 2, and beta 1 rhythmic oscillations within the zone of a chaotic dissipative behavior, whereas in contrast the beta 2 band shows a much higher level of entropy and a significant low level of complexity that correspond to a non-invertible cubic map. Our findings enhance the importance of the gamma band during attention in perceptual feature binding during the visuomotor/imagery tasks.

1.
G.
Buzsáki
,
Rhythms of the Brain
, (
Oxford University Press, New York, USA
,
2006
).
2.
F.
Montani
and
O.
Rosso
, “
Entropy–complexity characterization of brain development in chickens
,”
Entropy
16
,
4677
4692
(
2014
).
3.
A.
Kostov
and
M.
Polak
, “
Parallel man-machine training in development of EEG-based cursor control
,”
IEEE Trans. Rehabil. Eng.
8
,
203
205
(
2000
).
4.
D.
McFarland
,
G. W.
Neat
,
R. F.
Read
, and
J. R.
Wolpaw
, “
An EEG-based method for graded cursor control
,”
Psychobiology
21
,
77
81
(
1993
).
5.
J. d. R.
Millán
,
F.
Renkens
,
J.
Mourino
, and
W.
Gerstner
, “
Noninvasive brain-actuated control of a mobile robot by human EEG
,”
IEEE Trans. Biomed. Eng.
51
,
1026
1033
(
2004
).
6.
G.
Pfurtscheller
,
D.
Flotzinger
, and
J.
Kalcher
, “
Brain-computer interface: A new communication device for handicapped persons
,”
J. Microcomput. Appl.
16
,
293
299
(
1993
).
7.
J.
Wolpaw
,
D.
McFarland
,
G.
Neat
, and
C.
Forneris
, “
An EEG-based brain-computer interface for cursor control
,”
Electroencephalogr. Clin. Neurophysiol.
78
,
252
259
(
1991
).
8.
J.
Wolpaw
and
D.
McFarland
, “
Multichannel EEG-based brain-computer communication
,”
Electroencephalogr. Clin. Neurophysiol.
90
,
444
449
(
1994
).
9.
J.
Wolpaw
and
D.
McFarland
, “
Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
17849
17854
(
2004
).
10.
E.
Felton
,
J.
Wilson
,
J.
Williams
, and
P.
Garell
, “
Electrocorticographically controlled brain-computer interfaces using motor and sensory imagery in patients with temporary subdural electrode implants. Report of four cases
,”
J. Neurosurg.
106
,
495
500
(
2007
).
11.
E.
Leuthardt
,
G.
Schalk
,
J.
Ojemann
, and
D.
Moran
, “
A brain-computer interface using electrocorticographic signals in humans
,”
J. Neural Eng.
1
,
63
71
(
2004
).
12.
E.
Leuthardt
,
K.
Miller
,
G.
Schalk
,
R.
Rao
, and
J.
Ojemann
, “
Electrocorticography-based brain computer interface: The seattle experience
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
14
(2),
194
198
(
2006
).
13.
J.
Wilson
,
E.
Felton
,
P.
Garell
,
G.
Schalk
, and
J.
Williams
, “
ECoG factors underlying multimodal control of a brain-computer interface
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
14
(2),
246
250
(
2006
).
14.
N.
Crone
,
D.
Miglioretti
,
B.
Gordon
, and
R.
Lesser
, “
Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. ii. Event-related synchronization in the gamma band
,”
Brain
121
,
2301
2315
(
1998
).
15.
J.
Lachaux
,
E.
Rodriguez
,
J.
Martinerie
,
C.
Adam
,
D.
Hasboun
, and
F.
Varela
, “
A quantitative study of gamma-band activity in human intracranial recordings triggered by visual stimuli
,”
Eur. J. Neurosci.
12
,
2608
2622
(
2000
).
16.
J.
Lachaux
,
P.
Fonlupt
,
P.
Kahane
,
L.
Minotti
,
D.
Hoffmann
,
O.
Bertrand
, and
M.
Baciu
, “
Relationship between task-related gamma oscillations and bold signal: New insights from combined fMRI and intracranial EEG
,”
Hum. Brain Mapp.
28
,
1368
1375
(
2007
).
17.
K.
Miller
,
E.
Leuthardt
,
G.
Schalk
,
R.
Rao
,
N.
Anderson
,
D.
Moran
,
J.
Miller
, and
J.
Ojemann
, “
Spectral changes in cortical surface potentials during motor movement
,”
J. Neurosci.
27
,
2424
2432
(
2007
).
18.
T.
Pistohl
,
T.
Ball
,
A.
Schulze-Bonhage
,
A.
Aertsen
, and
C.
Mehring
, “
Prediction of arm movement trajectories from ECoG-recordings in humans
,”
J. Neurosci. Methods
167
,
105
114
(
2008
).
19.
J.
Sanchez
,
A.
Gunduz
,
P.
Carney
, and
J.
Principe
, “
Extraction and localization of mesoscopicmotor control signals for human ECoG neuroprosthetics
,”
J. Neurosci. Methods
167
,
63
81
(
2008
).
20.
G.
Schalk
,
J.
Kubánek
,
K.
Miller
,
N.
Anderson
,
E.
Leuthardt
,
J.
Ojemann
,
D.
Limbrick
,
D.
Moran
,
L.
Gerhardt
, and
J.
Wolpaw
, “
Decoding two-dimensional movement trajectories using electrocorticographic signals in humans
,”
J. Neural Eng.
4
,
264
275
(
2007
).
21.
G.
Schalk
and
J.
Mellinger
,
A Practical Guide to Brain-Computer Interfacing with BCI2000
(
Springer London Dordrecht Heidelberg New York
,
2010
).
22.
J.
Lachaux
,
D.
Hoffmann
,
L.
Minotti
,
A.
Berthoz
, and
P.
Kahane
, “
Intracerebral dynamics of saccade generation in the human frontal eye field and supplementary eye field
,”
Neuroimage
30
,
1302
1312
(
2006
).
23.
F.
Aoki
,
F.
Fetz
,
L.
Shupe
,
E.
Lettich
, and
G.
Ojemann
, “
Changes in power and coherence of brain activity in human sensorimotor cortex during performance of visuomotor tasks
,”
Biosystems
63
,
89
99
(
2001
).
24.
J.
Fell
,
P.
Klaver
,
K.
Lehnertz
,
T.
Grunwald
,
C.
Schaller
,
C.
Elger
, and
G.
Fernandez
, “
Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling
,”
Nat. Neurosci.
4
,
1259
1264
(
2001
).
25.
G.
Chen
,
M.
Rasch
,
R.
Wang
, and
X.
Zhang
, “
Experience-dependent emergence of beta and gamma band oscillations in the primary visual cortex during the critical period
,”
Sci. Rep.
5
,
17847
(
2015
).
26.
K.
Tanji
,
K.
Suzuki
,
A.
Delorme
,
H.
Shamoto
, and
N.
Nakasato
, “
High-frequency gamma-band activity in the basal temporal cortex during picture-naming and lexical-decision tasks
,”
J. Neurosci.
25
,
3287
3293
(
2005
).
27.
F.
Montani
,
A.
Kohn
,
M.
Smith
, and
S.
Schultz
, “
The role of correlations in direction and contrast coding in the primary visual cortex
,”
J. Neurosci.
27
,
2338
2348
(
2007
).
28.
F.
Montani
,
R.
Ince
,
R.
Senatore
,
E.
Arabzadeh
,
M.
Diamond
, and
S.
Panzeri
, “
The impact of high-order interactions on the rate of synchronous discharge and information transmission in somatosensory cortex
,”
Philos. Trans. R. Soc. A
367
,
3297
310
(
2009
).
29.
S.
Panzeri
,
R.
Senatore
,
M. A.
Montemurro
, and
R.
Petersen
, “
Correcting for the sampling bias problem in spike train information measures
,”
J. Neurophys.
98
,
1064
1072
(
2007
).
30.
F.
Montani
,
A.
Oliynyk
, and
L.
Fadiga
, “
Superlinear summation of information in premotor neuron pairs
,”
Int. J. Neural Syst.
27
,
1650009
(
2017
).
31.
I.
Nemenman
,
F.
Shafee
, and
W.
Bialek
, Entropy and Inference, Revisited. Adv. Neural Inf. Proc. Syst. Vol. 14, edited by T. G. Dietterich, S. Becker, and Z. Ghahramani (MIT Press, Cambridge, MA, 2002).
32.
I.
Nemenman
,
W.
Bialek
, and
R.
Steveninck
, “
Entropy and information in neuronal spike trains: Progress on the sampling problem
,”
Phys. Rev. E
69
,
056111
056116
(
2004
).
33.
C.
Bandt
and
B.
Pompe
,
Permutation entropy: A natural complexity measure for time series
.”
Phys. Rev. Lett.
88
,
174102
(
2002
).
34.
G.
Schalk
,
D.
McFarland
,
T.
Hinterberger
,
N.
Birbaumer
, and
J.
Wolpaw
, “
BCI2000: A general-purpose brain-computer interface (BCI) system
,”
IEEE Trans. Biomed. Eng.
51
,
1034
1043
(
2004
).
35.
O.
Rosso
and
C.
Masoller
, “
Detecting and quantifying stochastic and coherence resonances via information-theory complexity measurements
,”
Phys. Rev. E
79
,
040106(R)
(
2009
).
36.
O.
Rosso
and
C.
Masoller
, “
Detecting and quantifying temporal correlations in stochastic resonance via information theory measures
,”
Eur. Phys. J. B
69
,
37
43
(
2009
).
37.
O.
Rosso
,
F.
Olivares
, and
A.
Plastino
, “
Noise versus chaos in a causal Fisher-Shannon plane
,”
Pap. Phys.
7
,
070006
(
2015
).
38.
F.
Montani
,
O.
Rosso
,
F.
Matias
,
S.
Bressler
, and
C.
Mirasso
, “
A symbolic information approach to determine anticipated and delayed synchronization in neuronal circuit models
,”
Philos. Trans. R. Soc. Lond. Ser. A
373
,
20150110
(
2015
).
39.
F.
Montani
,
R.
Baravalle
,
L.
Montangie
, and
O.
Rosso
, “
Causal information quantification of prominent dynamical features of biological neurons
,”
Philos. Trans. R. Soc. Lond. Ser. A
373
,
20150109
(
2015
).
40.
J. R.
Wolpaw
,
D. J.
McFarland
,
T. M.
Vaughan
, and
G.
Schalk
, “
The wadsworth center brain-computer interface (BCI) research and development program
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
11
,
1
4
(
2003
).
41.
A.
Goldberger
,
L.
Amaral
,
L.
Glass
,
J.
Hausdorff
,
P.
Ivanov
,
R.
Mark
,
J.
Mietus
,
G.
Moody
,
C.-K.
Peng
, and
H.
Stanley
, “
Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals
,”
Circulation
101
,
E215
E220
(
2000
).
42.
See https://www.physionet.org/pn4/eegmmidb/ for EEG Motor Movement/Imagery Dataset.
43.
N. T. M.
Huong
,
H. Q.
Linh
, and
L. Q.
Khai
, “Classification of left/right hand movement EEG signals using event related potentials and advanced features,” in
Sixth International Conference on the Development of Biomedical Engineering in Vietnam (BME6)
, edited by T. Vo Van, T. Nguyen Le, T. Nguyen Duc, IFMBE Proceedings, (
Springer, Singapore, 2017
) Vol. 63.
44.
G.
Zebende
,
F.
Oliveira Filho
, and
J.
Leyva Cruz
,
“Auto-correlation in the motor/imaginary human eeg signals: A vision about the FDFA fluctuations”
.
PLoS One
12
,
e0183121
(
2017
).
45.
A.
Belitski
,
A.
Gretton
,
C.
Magri
,
Y.
Murayama
,
M.
Montemurro
,
N.
Logothetis
, and
S.
Panzeri
, “
Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information
,”
J. Neurosci.
28
,
5696
5709
(
2008
).
46.
X.
Wang
, “
Neurophysiological and computational principles of cortical rhythms in cognition
,”
Physiol. Rev.
90
,
1195
1268
(
2010
).
47.
C.
Hammond
,
H.
Bergman
, and
P.
Brown
, “
Pathological synchronization in Parkinson’s disease: Networks, models and treatments
,”
Trends Neurosci.
30
,
357
364
(
2007
).
48.
G.
Deco
and
A.
Thiele
, “
Attention: Oscillations and neuropharmacology
,”
Eur. J. Neurosci.
30
,
347
354
(
2009
).
49.
G.
Thut
,
C.
Miniussi
, and
J.
Gross
, “
The functional importance of rhythmic activity in the brain
,”
Curr. Biol.
22
,
658
663
(
2012
).
50.
M.
Martín
,
A.
Plastino
, and
O.
Rosso
, “
Generalized statistical complexity measures: Geometrical and analytical properties
,”
Phys. A
369
,
439
462
(
2006
).
51.
O.
Rosso
,
H.
Larrondo
,
M.
Martín
,
A.
Plastino
, and
M.
Fuentes
, “
Distinguishing noise from chaos
,”
Phys. Rev. Lett.
99
,
154102
(
2007
).
52.
D.
Feldman
,
C.
McTague
, and
J.
Crutchfield
, “
The organization of intrinsic computation: Complexity-entropy diagrams and the diversity of natural information processing
.”
Chaos
18
,
043106
(
2008
).
53.
F.
Montani
,
E.
Deleglise
, and
O.
Rosso
, “
Efficiency characterization of a large neuronal network: A causal information approach
,”
Phys. A
401
,
58
70
(
2014
).
54.
C.
Kayser
,
M.
Montemurro
,
N.
Logothetis
, and
S.
Panzeri
, “
Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns
,”
Neuron
61
,
597
608
(
2009
).
55.
V.
Sohal
,
S.
Pangratz-Fuehrer
,
U.
Rudolph
, and
J.
Huguenard
, “
Intrinsic and synaptic dynamics interact to generate emergent patterns of rhythmic bursting in thalamocortical neurons
,”
J. Neurosci.
26
,
4247
4255
(
2006
).
56.
R.
Llinas
, “
Intrinsic electrical properties of mammalian neurons and CNS function: A historical perspective
,”
Front. Cell. Neurosci.
8
,
1
14
(
2014
).
57.
I.
Guler
and
E.
Ubeyli
, “
Multiclass support vector machines for EEG-signals classification
,”
IEEE Trans. Inf. Technol. Biomed.
11
,
117
126
(
2007
).
58.
E.
Başar
,
Chaos in Brain Function
, 2nd ed. (
Springer Science & Business Media
,
2012
).
59.
M.
Dafilis
,
F.
Frascoli
,
P.
Cadusch
, and
D.
Liley
, “
Chaos and generalised multistability in a mesoscopic model of the electroencephalogram
,”
Phys. D
238
,
1056
1060
(
2009
).
60.
O.
Rosso
,
F.
Olivares
,
L.
Zunino
,
L.
De Micco
,
A.
Aquino
,
A.
Plastino
, and
H.
Larrondo
, “
Characterization of chaotic maps using the permutation Bandt-Pompe probability distribution
,”
Eur. Phys. J. B
86
,
116
(
2013
).
61.
W.
Klimesch
, “
Alpha-band oscillations, attention, and controlled access to stored information
,”
Trends Cogn. Sci.
16
,
606
617
(
2012
).
62.
C.
Tallon-Baudry
and
O.
Bertrand
, “
Oscillatory gamma activity in humans and its role in object representation
,”
Trends Cogn. Sci.
3
,
151
162
(
1999
).
63.
C.
Tallon-Baudry
,
O.
Bertrand
,
F.
Peronnet
, and
J.
Pernier
, “
Induced gamma-band activity during the delay of a visual short-term memory task in humans
,”
J. Neurosci.
18
,
4244
4254
(
1998
).
64.
C.
Shannon
and
W.
Weaver
,
The Mathematical Theory of Communication
(
University of Illinois Press
,
Champaign, IL
,
1949
).
65.
D.
Feldman
and
J.
Crutchfield
, “
Measures of statistical complexity: Why?
Phys. Lett. A
238
,
244
252
(
1998
).
66.
P.
Lamberti
,
M.
Martín
,
A.
Plastino
, and
O.
Rosso
, “
Intensive entropic non-triviality measure
,”
Phys. A
334
,
119
131
(
2008
).
67.
R.
López-Ruiz
,
H.
Mancini
, and
X.
Calbet
, “
A statistical measure of complexity
,”
Phys. Lett. A
209
,
321
326
(
1995
).
68.
I.
Grosse
,
P.
Bernaola-Galván
,
P.
Carpena
,
R.
Román-Roldán
,
J.
Oliver
, and
H.
Stanley
, “
Analysis of symbolic sequences using the Jensen-Shannon divergence
,”
Phys. Rev. E
65
,
041905
(
2002
).
69.
M.
Zanin
,
L.
Zunino
,
O.
Rosso
, and
D.
Papo
, “
Permutation entropy and its main biomedical and econophysics applications: A review
,”
Entropy
14
,
1553
1577
(
2012
).
70.
F.
Olivares
,
A.
Plastino
, and
O.
Rosso
, “
Contrasting chaos with noise via local versus global information quantifiers
,”
Phys. Lett. A
376
,
1577
1583
(
2012
).
71.
P.
Saco
,
L.
Carpi
,
A.
Figliola
,
E.
Serrano
, and
O.
Rosso
, “
Entropy analysis of the dynamics of el niño/southern oscillation during the holocene
,”
Phys. A
389
,
5022
5027
(
2010
).
72.
K.
Keller
and
M.
Sinn
, “
Ordinal analysis of time series
,”
Phys. A
356
,
114
120
(
2005
).
73.
L.
Zunino
,
M.
Soriano
,
I.
Fischer
,
O.
Rosso
, and
C.
Mirasso
, “
Permutation-information-theory approach to unveil delay dynamics from time-series analysis
,”
Phys. Rev. E
82
,
046212
(
2010
).
74.
M.
Soriano
,
L.
Zunino
,
O.
Rosso
,
I.
Fischer
, and
C.
Mirasso
, “
Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis
,”
IEEE J. Quant. Electron.
47
,
252
261
(
2011
).
75.
L.
Zunino
,
M.
Soriano
, and
O.
Rosso
, “
Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach
,”
Phys. Rev. E
86
,
046210
(
2012
).
76.
F.
Olivares
,
A.
Plastino
, and
O.
Rosso
, “
Ambiguities in the Bandt-Pompe’s methodology for local entropic quantifiers
,”
Phys. A
391
,
2518
2526
(
2012
).
77.
S.
Ma
, “
Calculation of entropy from data of motion
,”
J. Stat. Phys.
26
,
221
240
(
1981
).
78.
S.
Strong
,
R.
Koberle
,
R.
de Ruyter van Steveninck
, and
W.
Bialek
, “
Entropy and information in neural spike trains
,”
Phys. Rev. Lett.
80
,
197
200
(
1998
).
79.
D.
Wolpert
and
D.
Wolf
, “
Estimating functions of probability distributions from a finite set of samples
,”
Phys. Rev. E
52
,
6841
54
(
1995
).
80.
I.
Samengo
, “
Estimating probabilities from experimental frequencies
,”
Phys. Rev. E
65
,
046124
(
2002
).
81.
A.
Carlton
, “
On the bias of information estimates
,”
Psychol. Bull.
71
,
108
109
(
1969
).
82.
S.
Panzeri
and
A.
Treves
, “
Analytical estimates of limited sampling biases in different information measures
,”
Network
7
,
87
107
(
1996
).
83.
S.
Panzeri
and
S.
Schultz
, “
A unified approach to the study of temporal, correlational and rate coding
,”
Neural Comput.
13
,
1311
1349
(
2001
).
84.
N.
Rust
,
S.
Schultz
, and
J.
Movshon
, “
A reciprocal relationship between reliability and responsiveness in developing cortical neurons
,”
J. Neurosci.
22
,
10519
10523
(
2002
).
85.
L.
Paninski
, “
Estimation of entropy and mutual information
,”
Neural Comput.
15
,
1191
1254
(
2003
).
86.
O.
Rosso
,
M.
Martín
,
A.
Figliola
,
K.
Keller
, and
A.
Plastino
, “
Eeg analysis using wavelet-based information tools
,”
J. Neurosci. Methods
153
,
163
182
(
2006
).
You do not currently have access to this content.