Electroencephalography (EEG) signals depict the electrical activity that takes place at the surface of the brain and provide an important tool for understanding a variety of cognitive processes. The EEG is the product of synchronized activity of the brain, and variations in EEG oscillations patterns reflect the underlying changes in neuronal synchrony. Our aim is to characterize the complexity of the EEG rhythmic oscillations bands when the subjects perform a visuomotor or imagined cognitive tasks (imagined movement), providing a causal mapping of the dynamical rhythmic activities of the brain as a measure of attentional investment. We estimate the intrinsic correlational structure of the signals within the causality entropy-complexity plane , where the enhanced complexity in the gamma 1, gamma 2, and beta 1 bands allows us to distinguish motor-visual memory tasks from control conditions. We identify the dynamics of the gamma 1, gamma 2, and beta 1 rhythmic oscillations within the zone of a chaotic dissipative behavior, whereas in contrast the beta 2 band shows a much higher level of entropy and a significant low level of complexity that correspond to a non-invertible cubic map. Our findings enhance the importance of the gamma band during attention in perceptual feature binding during the visuomotor/imagery tasks.
Skip Nav Destination
,
,
Article navigation
July 2018
Research Article|
July 20 2018
Rhythmic activities of the brain: Quantifying the high complexity of beta and gamma oscillations during visuomotor tasks
Special Collection:
Nonlinear Dynamics of Non-equilibrium Complex Systems
Roman Baravalle;
Roman Baravalle
1
IFLYSIB, CONICET & Universidad Nacional de La Plata
, Calle 59-789, 1900 La Plata, Argentina
2
Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata
, Calle 49 y 115. C.C. 67, 1900 La Plata, Argentina
Search for other works by this author on:
Osvaldo A. Rosso
;
Osvaldo A. Rosso
3
Departamento de Informática en Salud, Hospital Italiano de Buenos Aires & CONICET
, C1199ABB Ciudad Autónoma de Buenos Aires, Argentina
4
Instituto de Física,Universidade Federal de Alagoas (UFAL)
, BR 104 Norte km 97, 57072-970 Maceió, Brazil
5
Complex Systems Group, Facultad de Ingeniería y Ciencias Aplicadas,Universidad de los Andes
, Avenida Monseor Álvaro del Portillo 12.455, Las Condes, Santiago, Chile
Search for other works by this author on:
Fernando Montani
1
IFLYSIB, CONICET & Universidad Nacional de La Plata
, Calle 59-789, 1900 La Plata, Argentina
2
Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata
, Calle 49 y 115. C.C. 67, 1900 La Plata, Argentina
Search for other works by this author on:
Roman Baravalle
1,2
Osvaldo A. Rosso
3,4,5
Fernando Montani
1,2
1
IFLYSIB, CONICET & Universidad Nacional de La Plata
, Calle 59-789, 1900 La Plata, Argentina
2
Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata
, Calle 49 y 115. C.C. 67, 1900 La Plata, Argentina
3
Departamento de Informática en Salud, Hospital Italiano de Buenos Aires & CONICET
, C1199ABB Ciudad Autónoma de Buenos Aires, Argentina
4
Instituto de Física,Universidade Federal de Alagoas (UFAL)
, BR 104 Norte km 97, 57072-970 Maceió, Brazil
5
Complex Systems Group, Facultad de Ingeniería y Ciencias Aplicadas,Universidad de los Andes
, Avenida Monseor Álvaro del Portillo 12.455, Las Condes, Santiago, Chile
a)
Electronic mail: [email protected]
Chaos 28, 075513 (2018)
Article history
Received:
February 07 2018
Accepted:
June 11 2018
Citation
Roman Baravalle, Osvaldo A. Rosso, Fernando Montani; Rhythmic activities of the brain: Quantifying the high complexity of beta and gamma oscillations during visuomotor tasks. Chaos 1 July 2018; 28 (7): 075513. https://doi.org/10.1063/1.5025187
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Sex, ducks, and rock “n” roll: Mathematical model of sexual response
K. B. Blyuss, Y. N. Kyrychko
Introduction to Focus Issue: Data-driven models and analysis of complex systems
Johann H. Martínez, Klaus Lehnertz, et al.
Selecting embedding delays: An overview of embedding techniques and a new method using persistent homology
Eugene Tan, Shannon Algar, et al.
Related Content
Data-driven modelling of brain activity using neural networks, diffusion maps, and the Koopman operator
Chaos (January 2024)
Robot Control Through Brain Computer Interface For Patterns Generation
AIP Conf. Proc. (September 2011)
Introduction to Focus Issue: Nonlinear dynamics of non-equilibrium complex systems
Chaos (July 2018)
Dynamics in cortical activity revealed by resting-state MEG rhythms
Chaos (December 2020)