This paper discusses the dynamics of intraday prices of 12 cryptocurrencies during the past months’ boom and bust. The importance of this study lies in the extended coverage of the cryptoworld, accounting for more than 90% of the total daily turnover. By using the complexity-entropy causality plane, we could discriminate three different dynamics in the data set. Whereas most of the cryptocurrencies follow a similar pattern, there are two currencies (ETC and ETH) that exhibit a more persistent stochastic dynamics, and two other currencies (DASH and XEM) whose behavior is closer to a random walk. Consequently, similar financial assets, using blockchain technology, are differentiated by market participants.

1.
See https://www.coindesk.com/information/what-is-ethereum/ for “What is ethereum?,” accessed 2018-06-04.
2.
J.
Alvarez-Ramirez
,
E.
Rodriguez
, and
G.
Espinosa-Paredes
, “
Is the US stock market becoming weakly efficient over time? Evidence from 80-year-long data
,”
Physica A
391
,
5643
5647
(
2012
).
3.
C.
Bandt
and
B.
Pompe
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
,
174102
(
2002
).
4.
A.
Bariviera
,
M.
Guercio
,
L.
Martinez
, and
O.
Rosso
, “
A permutation information theory tour through different interest rate maturities: The libor case
,”
Philos. Trans. R. Soc. Lond. A
373
,
20150119
(
2015
).
5.
A. F.
Bariviera
, “
The influence of liquidity on informational efficiency: The case of the Thai Stock Market
,”
Physica A
390
,
4426
4432
(
2011
).
6.
A. F.
Bariviera
, “
The inefficiency of Bitcoin revisited: A dynamic approach
,”
Econ. Lett.
161
,
1
4
(
2017
).
7.
A. F.
Bariviera
,
M. J.
Basgall
,
W.
Hasperué
, and
M.
Naiouf
, “
Some stylized facts of the Bitcoin market
,”
Physica A
484
,
82
90
(
2017
).
8.
A. F.
Bariviera
,
M.
Guercio
,
L.
Martinez
, and
O.
Rosso
, “
The (in)visible hand in the libor market: An information theory approach
,”
Eur. Phys. J. B
88
,
208
(
2015
).
9.
A. F.
Bariviera
,
M. B.
Guercio
, and
L. B.
Martinez
, “
A comparative analysis of the informational efficiency of the fixed income market in seven european countries
,”
Econ. Lett.
116
,
426
428
(
2012
).
10.
A. F.
Bariviera
,
L.
Zunino
,
M. B.
Guercio
,
L. B.
Martinez
, and
O. a.
Rosso
, “
Revisiting the European sovereign bonds with a permutation-information-theory approach
,”
Eur. Phys. J. B
86
,
509
(
2013
).
11.
E.-T.
Cheah
and
J.
Fry
, “
Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin
,”
Econ. Lett.
130
,
32
36
(
2015
).
12.
Coinmarket, “Crypto-Currency Market Capitalizations,” 2017, see https://coinmarketcap.com/currencies/; accessed 27 December 2017.
13.
M. M.
Dryden
, “
Short-term forecasting of share prices: An Information Theory approach
,”
Scott. J. Polit. Econ.
15
,
227
249
(
1968
).
14.
E. F.
Fama
, “
Tomorrow on the New York stock exchange
,”
J. Bus.
38
,
285
299
(
1965
).
15.
E. F.
Fama
, “
Efficient capital markets: A review of theory and empirical work
,”
J. Finance
25
,
383
417
(
1970
).
16.
D. P.
Feldman
,
J. P.
Crutchfield
, “
Measures of statistical complexity: Why?
,”
Phys. Lett. A
238
,
244
252
(
1998
).
17.
D. P.
Feldman
,
C. S.
McTague
, and
J. P.
Crutchfield
, “
The organization of intrinsic computation: Complexity-entropy diagrams and the diversity of natural information processing
,”
Chaos
18
,
043106
(
2008
).
18.
J. M.
Finn
,
J. D.
Goettee
,
Z.
Toroczkai
,
M.
Anghel
, and
B. P.
Wood
, “
Estimation of entropies and dimensions by nonlinear symbolic time series analysis
,”
Chaos
13
,
444
456
(
2003
).
19.
K.
Keller
and
M.
Sinn
, “
Ordinal analysis of time series
,”
Physica A
356
,
114
120
(
2005
).
20.
J. H.
Kim
,
A.
Shamsuddin
, and
K. -P.
Lim
, “
Stock return predictability and the adaptive markets hypothesis: Evidence from century-long U.S. data
,”
J. Empir. Finance
18
,
868
(
2011
).
21.
T.
Kim
, “
On the transaction cost of Bitcoin
,”
Finance Res. Lett.
23
,
300
305
(
2017
).
22.
P. W.
Lamberti
,
M. T.
Martín
,
A.
Plastino
, and
O. A.
Rosso
, “
Intensive entropic non-triviality measure
,”
Physica A
334
,
119
131
(
2004
).
23.
R.
López-Ruiz
,
H. L.
Mancini
, and
X.
Calbet
, “
A statistical measure of complexity
,”
Phys. Lett. A
209
,
321
326
(
1995
).
24.
M.
Martín
,
A.
Plastino
, and
O.
Rosso
, “
Statistical complexity and disequilibrium
,”
Phys. Lett. A
311
,
126
132
(
2003
).
25.
M. T.
Martín
,
A.
Plastino
, and
O. A.
Rosso
, “
Generalized statistical complexity measures: Geometrical and analytical properties
,”
Physica A
369
,
439
462
(
2006
).
26.
E.
Martina
,
E.
Rodriguez
,
R.
Escarela-Perez
, and
J.
Alvarez-Ramirez
, “
Multiscale entropy analysis of crude oil price dynamics
,”
Energy Econ.
33
,
936
947
(
2011
).
27.
K.
Mischaikow
,
M.
Mrozek
,
J.
Reiss
, and
A.
Szymczak
, “
Construction of symbolic dynamics from experimental time series
,”
Phys. Rev. Lett.
82
,
1144
1147
(
1999
).
28.
S.
Nadarajah
and
J.
Chu
, “
On the inefficiency of Bitcoin
,”
Econ. Lett.
150
,
6
9
(
2017
).
29.
S.
Nakamoto
, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2009, see https://bitcoin.org/bitcoin.pdf/; accessed 27 December 2016.
30.
Accessed 14/02/2018.
31.
A.
Ortiz-Cruz
,
E.
Rodriguez
,
C.
Ibarra-Valdez
, and
J.
Alvarez-Ramirez
, “
Efficiency of crude oil markets: Evidences from informational entropy analysis
,”
Energy Policy
41
,
365
373
(
2012
).
32.
G. E.
Powell
and
I. C.
Percival
, “
A spectral entropy method for distinguishing regular and irregular motion of hamiltonian systems
,”
J. Phys. A
12
,
2053
(
1979
).
33.
O. A.
Rosso
,
S.
Blanco
,
J.
Yordanova
,
V.
Kolev
,
A.
Figliola
,
M.
Schürmann
, and
E.
Başar
, “
Wavelet entropy: A new tool for analysis of short duration brain electrical signals
,”
J. Neurosci. Methods
105
,
65
75
(
2001
).
34.
O. A.
Rosso
,
H. A.
Larrondo
,
M. T.
Martin
,
A.
Plastino
, and
M. A.
Fuentes
, “
Distinguishing noise from chaos
,”
Phys. Rev. Lett.
99
,
154102
(
2007
).
35.
P. M.
Saco
,
L. C.
Carpi
,
A.
Figliola
,
E.
Serrano
, and
O. A.
Rosso
, “
Entropy analysis of the dynamics of el niño southern oscillation during the holocene
,”
Physica A
389
,
5022
5027
(
2010
).
36.
P. A.
Samuelson
, “
Proof that properly anticipated prices fluctuate randomly
,”
Ind. Manage. Rev.
6
,
41
49
(
1965
).
37.
C. E.
Shannon
and
W.
Weaver
,
The Mathematical Theory of Communication
(
University of Illinois Press
,
Champaign, IL
,
1949
).
38.
M. C.
Soriano
,
L.
Zunino
,
O. A.
Rosso
,
I.
Fischer
, and
C. R.
Mirasso
, “
Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis
,”
IEEE J. Quantum Electron.
47
,
252
261
(
2011
).
39.
H.
Theil
and
C. T.
Leenders
, “
Tomorrow on the Amsterdam stock exchange
,”
J. Bus.
38
,
277
284
(
1965
).
40.
A.
Urquhart
, “
The inefficiency of Bitcoin
,”
Econ. Lett.
148
,
80
82
(
2016
).
41.
A.
Urquhart
, “
Price clustering in Bitcoin
,”
Econ. Lett.
159
,
145
148
(
2017
).
42.
M.
Zanin
,
L.
Zunino
,
O. A.
Rosso
, and
D.
Papo
, “
Permutation entropy and its main biomedical and econophysics applications: A review
,”
Entropy
14
,
1553
1577
(
2012
).
43.
L.
Zunino
,
A. F.
Bariviera
,
M. B.
Guercio
,
L. B.
Martinez
, and
O. A.
Rosso
, “
On the efficiency of sovereign bond markets
,”
Physica A
391
,
4342
4349
(
2012
).
44.
L.
Zunino
,
M. C.
Soriano
,
I.
Fischer
,
O. A.
Rosso
, and
C. R.
Mirasso
, “
Permutation-information-theory approach to unveil delay dynamics from time-series analysis
,”
Phys. Rev. E
82
,
046212
(
2010
).
45.
L.
Zunino
,
B. M.
Tabak
,
F.
Serinaldi
,
M.
Zanin
,
D. G.
Pérez
, and
O. A.
Rosso
, “
Commodity predictability analysis with a permutation information theory approach
,”
Physica A
390
,
876
890
(
2011
).
46.
L.
Zunino
,
M.
Zanin
,
B. M.
Tabak
,
D. G.
Pérez
, and
O. A.
Rosso
, “
Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency
,”
Physica A
389
,
1891
1901
(
2010
).
You do not currently have access to this content.