A classical random walker is characterized by a random position and velocity. This sort of random walk was originally proposed by Einstein to model Brownian motion and to demonstrate the existence of atoms and molecules. Such a walker represents an inanimate particle driven by environmental fluctuations. On the other hand, there are many examples of so-called “persistent random walkers,” including self-propelled particles that are able to move with almost constant speed while randomly changing their direction of motion. Examples include living entities (ranging from flagellated unicellular organisms to complex animals such as birds and fish), as well as synthetic materials. Here we discuss such persistent non-interacting random walkers as a model for active particles. We also present a model that includes interactions among particles, leading to a transition to flocking, that is, to a net flux where the majority of the particles move in the same direction. Moreover, the model exhibits secondary transitions that lead to clustering and more complex spatially structured states of flocking. We analyze all these transitions in terms of bifurcations using a number of mean field strategies (all to all interaction and advection-reaction equations for the spatially structured states), and compare these results with direct numerical simulations of ensembles of these interacting active particles.

1.
A.
Einstein
,
Investigations on the Theory of the Brownian Movement
(
Dover Publications, Inc.
,
1956
).
2.
V.
Schaller
,
C.
Weber
,
C.
Semmrich
,
E.
Frey
, and
A. R.
Bausch
,
Nature
467
,
73
77
(
2010
).
3.
T.
Sanchez
,
D. T. N.
Chen
,
S. J.
DeCamp
,
M.
Heymann
, and
Z.
Dogic
,
Nature
491
,
431
434
(
2012
).
4.
A.
Bricard
,
J.-B.
Caussin
,
N.
Desreumaux
,
O.
Dauchot
, and
D.
Bartolo
,
Nature
503
,
95
98
(
2013
).
5.
D.
Kaiser
,
Nat. Rev. Microbiol.
1
,
45
(
2003
).
6.
T. V.
Kasyap
,
D. L.
Koch
, and
M.
Wu
,
Phys. Fluids
26
,
081901
(
2014
).
7.
J. K.
Parrish
and
L.
Edelstein-Keshet
,
Science
284
,
99
(
1999
).
8.
P.
Gabriel
,
Nature
529
,
16
(
2016
).
9.
T.
Vicsek
,
A.
Czir-k
,
E.
Ben-Jacob
,
I.
Cohen
, and
O.
Shochet
,
Phys. Rev. Lett.
75
,
1226
1229
(
1995
).
10.
J.
Toner
and
Y.
Tu
,
Phys. Rev. Lett.
75
,
4326
4329
(
1995
).
11.
J.
Toner
and
Y.
Tu
,
Phys. Rev. E
58
,
4828
44858
(
1998
).
12.
A.
Czirók
,
A.-L.
Barabásis
, and
T.
Vicsek
,
Phys. Rev. Lett.
82
,
209
212
(
1999
).
13.
G.
Grégoire
and
H.
Chaté
,
Phys. Rev. Lett.
92
,
025702
(
2004
).
14.
M.
Nagy
,
I.
Daruka
, and
T.
Vicsek
,
Phys. A
373
,
445
(
2007
).
15.
M.
Aldana
,
V.
Dossetti
,
C.
Huepe
,
V. M.
Kenkre
, and
H.
Larralde
,
Phys. Rev. Lett.
98
,
095702
(
2007
).
16.
H.
Chat
,
F.
Ginelli
,
G.
Grgoire
, and
F.
Raynaud
,
Phys. Rev. E
77
,
046113
(
2008
).
17.
F.
Peruani
,
A.
Deutsch
, and
M.
Bar
,
Phys. Rev. E
74
,
030904(R)
(
2006
).
18.
A.
Baskaran
and
C.
Marchetti
,
Phys. Rev. Lett.
101
,
268101
(
2008
).
19.
F.
Ginelli
,
F.
Peruani
,
M.
Bar
,
H.
Chaté
,
Phys. Rev. Lett.
104
,
184502
(
2010
).
20.
A. P.
Solon
and
J.
Tailleur
,
Phys. Rev. Lett.
111
,
078101
(
2013
).
21.
M.
Kac
,
Rocky Mt. J. Math.
4
,
497
(
1974
).
22.
J.
Masoliver
,
K.
Lindenberg
, and
G. H.
Weiss
,
Phys. A
157
,
891
898
(
1989
).
23.
J.
Masoliver
and
G. H.
Weiss
,
Phys. Rev. E
49
,
3852
(
1994
).
24.
J.
Masoliver
and
K.
Lindenberg
,
Eur. Phys. J. B
90
,
107
(
2017
).
25.
E. W.
Burkholder
and
J. F.
Brady
,
Phys. Rev. E
95
,
052605
(
2017
).
26.
A.
Kirman
,
Quart. J. Econ.
108
,
137
(
1993
).
27.
A.
Fernandez-Peralta
,
R.
Toral
,
A.
Carro
, and
M.
San Miguel
, e-print arXiv:1803.06861.
28.
I. L. D.
Pinto
,
D.
Escaff
,
U.
Harbola
,
A.
Rosas
, and
K.
Lindenberg
,
Phys. Rev. E
89
,
052143
(
2014
).
29.
A.
Rosas
,
D.
Escaff
,
I. L. D.
Pinto
, and
K.
Lindenberg
,
J. Phys. A
49
,
095001
(
2016
).
30.
A.
Rosas
,
D.
Escaff
,
I. L. D.
Pinto
, and
K.
Lindenberg
,
Phys. Rev. E
95
,
032104
(
2017
).
31.
D.
Escaff
,
I. L. D.
Pinto
, and
K.
Lindenberg
,
Phys. Rev. E
90
,
052111
(
2014
).
32.
A. M.
Turing
,
Philos. Trans. R. Soc. B
237
,
37
(
1952
).
33.
M. A.
Fuentes
,
M. N.
Kuperman
, and
V. M.
Kenkre
,
Phys. Rev. Lett.
91
,
158104
(
2003
).
34.
E.
Hernandez-Garcia
and
C.
Lopez
,
Phys. Rev. E
70
,
016216
(
2004
).
35.
E.
Heinsalu
,
E.
Hernandez-Garcia
, and
C.
Lopez
,
Phys. Rev. E
85
,
041105
(
2012
).
36.
M. G.
Clerc
,
D.
Escaff
, and
V. M.
Kenkre
,
Phys. Rev. E
72
,
056217
(
2005
).
37.
M. G.
Clerc
,
D.
Escaff
, and
V. M.
Kenkre
,
Phys. Rev. E
82
,
036210
(
2010
).
38.
O.
Lejeune
and
M.
Tlidi
,
J. Veg. Sci.
10
,
201
(
1999
).
39.
D.
Escaff
,
C.
Fernandez-Oto
,
M. G.
Clerc
, and
M.
Tlidi
,
Phys. Rev. E
91
,
022924
(
2015
).
40.
S.
Mishra
,
A.
Baskaran
, and
M. C.
Marchetti
,
Phys. Rev. E
81
,
061916
(
2010
).
41.
A.
Gopinath
,
M. F.
Hagan
,
M. C.
Marchetti
, and
A.
Baskaran
,
Phys. Rev. E
85
,
061903
(
2012
).
42.
T.
Ihle
,
Phys. Rev. E
83
,
030901
(
2011
).
43.
H.-P.
Deutsch
,
J. Stat. Phys.
67
,
1039
(
1992
).
44.
If there were more than one localized pattern in the system (say two solitary waves) then one has to be more careful in the definition of this order parameter, but we have not found these states for the range of parameters considered in our simulations.
45.
A more detailed account of the influence of the density of particles =L/N is outside the scope of this paper and will be published subsequently.
You do not currently have access to this content.