In 2002, Bandt and Pompe [Phys. Rev. Lett. 88, 174102 (2002)] introduced a successfully symbolic encoding scheme based on the ordinal relation between the amplitude of neighboring values of a given data sequence, from which the permutation entropy can be evaluated. Equalities in the analyzed sequence, for example, repeated equal values, deserve special attention and treatment as was shown recently by Zunino and co-workers [Phys. Lett. A 381, 1883 (2017)]. A significant number of equal values can give rise to false conclusions regarding the underlying temporal structures in practical contexts. In the present contribution, we review the different existing methodologies for treating time series with tied values by classifying them according to their different strategies. In addition, a novel data-driven imputation is presented that proves to outperform the existing methodologies and avoid the false conclusions pointed by Zunino and co-workers.

1.
R. H.
Shumway
and
D. S.
Stoffer
,
Time Series Analysis and its Applications
(
Springer
,
Berlin
,
2006
).
2.
C.
Bandt
and
B.
Pompe
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
,
174102
(
2002
).
3.
O. A.
Rosso
,
H. A.
Larrondo
,
M. T.
Martín
,
A.
Plastino
, and
M. A.
Fuentes
, “
Distinguishing noise from chaos
,”
Phys. Rev. Lett.
99
,
154102
(
2007
).
4.
Y.
Cao
,
W. W.
Tung
,
J. B.
Gao
,
V. A.
Protopopescu
, and
L. M.
Hively
, “
Detecting dynamical changes in time series using the permutation entropy
,”
Phys. Rev. E
70
(
4
),
046217
(
2004
).
5.
C.
Bandt
, “
Ordinal time series analysis
,”
Ecol. Modell.
182
,
229
238
(
2005
).
6.
A. M.
Kowalski
,
M. T.
Martín
,
A.
Plastino
, and
O. A.
Rosso
, “
Bandt-Pompe approach to the classical-quantum transition
,”
Phys. D
233
,
21
31
(
2007
).
7.
L.
Zunino
,
M. C.
Soriano
,
I.
Fischer
,
O. A.
Rosso
, and
C. R.
Mirasso
, “
Permutation information-theory approach to unveil delay dynamics from time-series analysis
,”
Phys. Rev. E
82
,
046212
(
2010
).
8.
O. A.
Rosso
,
L.
De Micco
,
A.
Plastino
, and
H.
Larrondo
, “
Info-quantifiers’ map-characterization revisited
,”
Phys. A
389
,
249
262
(
2010
).
9.
A. M.
Kowalski
,
M. T.
Martín
,
A.
Plastino
, and
O. A.
Rosso
, “
Fisher-information description of the classical-quantal transition
,”
Phys. A
390
,
2435
2441
(
2011
).
10.
L.
De Micco
,
J. G.
Fernández
,
H. A.
Larrondo
,
A.
Plastino
, and
O. A.
Rosso
, “
Sampling period, statistical complexity, and chaotic attractors
,”
Phys. A
391
,
2564
2575
(
2012
).
11.
L.
Zunino
,
M. C.
Soriano
, and
O. A.
Rosso
, “
Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach
,”
Phys. Rev. E
86
,
046210
(
2012
).
12.
M. C.
Soriano
,
L.
Zunino
,
O. A.
Rosso
,
I.
Fischer
, and
C. R.
Mirasso
, “
Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis
,”
IEEE J. Quantum Electron.
47
,
252
261
(
2011
).
13.
L.
Zunino
,
O. A.
Rosso
, and
M. C.
Soriano
, “
Characterizing the hyperchaotic dynamics of a semiconductor laser subject to optical feedback via permutation entropy
,”
IEEE J. Sel. Top. Quantum Electron.
17
(
5
),
1250
1257
(
2011
).
14.
J. P.
Toomey
and
D. M.
Kane
, “
Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entrop
,”
Opt. Express
22
(
2
),
171
1725
(
2014
).
15.
L.
Yang
,
W.
Pan
,
L.
Yan
,
B.
Luo
, and
N.
Li
, “
Mapping the dynamic complexity and synchronization in unidirectionally coupled external-cavity semiconductor lasers using permutation entropy
,”
J. Opt. Soc. Am. B
32
(
7
),
1463
1470
(
2015
).
16.
H.
Liu
,
B.
Ren
,
Q.
Zhao
, and
N.
Li
, “
Characterizing the optical chaos in a special type of small networks of semiconductor lasers using permutation entropy
,”
Opt. Commun.
359
,
7
84
(
2016
).
17.
H.
Lange
,
O. A.
Rosso
, and
M.
Hauhs
, “
Ordinal pattern and statistical complexity analysis of daily stream flow time series
,”
Eur. Phys. J. Special Topics
222
,
535
552
(
2013
).
18.
F.
Serinaldi
,
L.
Zunino
, and
O. A.
Rosso
, “
Complexity-entropy analysis of daily stream flow time series in the continental United States
,”
Stoch. Environ. Res. Risk Assess
28
,
1685
1708
(
2014
).
19.
T.
Stosic
,
L.
Telesca
,
D. V.
De Souza Ferreira
, and
B.
Stosic
, “
Investigating anthropically induced effects in streamflow dynamics by using permutation entropy and statistical complexity analysis: A case study
,”
J. Hydrol.
540
,
1136
1145
(
2016
).
20.
G.
Consolini
and
P.
De Michelis
, “
Permutation entropy analysis of complex magnetospheric dynamics
,”
J. Atmos. Sol.-Terr. Phys.
115–116
,
25
31
(
2014
).
21.
P. M.
Saco
,
L. C.
Carpi
,
A.
Figliola
,
E.
Serrano
, and
O. A.
Rosso
, “
Entropy analysis of the dynamics of El Ni no/Southern Oscillation during the Holocene
,”
Phys. A
389
,
5022
5027
(
2010
).
22.
S.
Sippel
,
H.
Lange
,
M. D.
Mahecha
,
M.
Hauhs
,
P.
Bodesheim
,
T.
Kaminski
,
F.
Gans
, and
O. A.
Rosso
, “
Diagnosing the dynamics of observed and simulated ecosystem gross primary productivity with time causal information theory quantifiers
,”
PLoS ONE
11
(
10
),
e0164960
(
2016
).
23.
R.
Yan
,
Y.
Liu
, and
R. X.
Gao
, “
Permutation entropy: a nonlinear statistical measure for status characterization of rotary machines
,”
Mech. Syst. Signal Process.
29
,
474
484
(
2012
).
24.
A. L. L
Aquino
,
T. S. G
Cavalcante
,
E. S.
Almeida
,
A. C.
Frery
, and
O. A.
Rosso
, “
Characterization of vehicle behavior with information theory
,”
Eur. Phys. J. B
88
,
257
(
2015
).
25.
A. L. L
Aquino
,
H. S.
Ramos
,
A. C.
Frery
,
L. P.
Viana
,
T. S. G
Cavalcante
, and
O. A.
Rosso
, “
Characterization of electric load with information theory quantifiers
,”
Phys. A
465
,
277
284
(
2017
).
26.
F. O.
Redelico
,
F.
Traversaro
,
N.
Oyarzabal
,
I.
Vilaboa
, and
O. A.
Rosso
, “
Evaluation of the status of rotary machines by time causal information theory quantifiers
,”
Phys. A
470
,
321
329
(
2017
).
27.
O. A.
Rosso
,
R.
Ospina
, and
A. C.
Frery
, “
Classification and verification of handwritten signatures with time causal information theory quantifiers
,”
PLoS ONE
11
(
12
),
e0166868
(
2016
)..
28.
L.
De Micco
,
C. M.
González
,
H. A.
Larrondo
,
M. T.
Martín
,
A.
Plastino
, and
O. A.
Rosso
, “
Randomizing nonlinear maps via symbolic dynamics
,”
Phys. A
387
,
3373
3383
(
2008
).
29.
L.
De Micco
,
H. A.
Larrondo
,
A.
Plastino
, and
O. A.
Rosso
, “
Quantifiers for randomness of chaotic pseudo-random number generators
,”
Philos. Trans. R. Soc. A
367
,
3281
3296
(
2009
).
30.
M.
Zanin
,
L.
Zunino
,
O. A.
Rosso
, and
D.
Papo
, “
Permutation entropy and its main biomedical and econophysics applications: A review
,”
Entropy
14
,
1553
1577
(
2012
).
31.
X.
Li
,
G.
Ouyang
, and
D. A.
Richards
, “
Predictability analysis of absence seizures with permutation entropy
,”
Epilepsy Res.
77
(
1
),
70
74
(
2007
).
32.
X.
Li
,
S.
Cui
, and
L. J.
Voss
, “
Using permutation entropy to measure the electroencephalographic effects of sevoflurane
,”
Anesthesiology
109
,
448
456
(
2008
).
33.
U.
Parlitz
,
S.
Berg
,
S.
Luther
,
A.
Schirdewan
,
J.
Kurths
, and
N.
Wessel
, “
Classifying cardiac biosignals using ordinal pattern statistics and symbolic dynamics
,”
Comput. Biol. Med.
42
,
319
327
(
2012
).
34.
F. C.
Morabito
,
D.
Labate
,
F.
La Foresta
,
A.
Bramanti
,
G.
Morabito
, and
I.
Palamara
, “
Multivariate multi-scale permutation entropy for complexity analysis of Alzheimer’s disease EEG
,”
Entropy
14
,
1186
1202
(
2012
).
35.
J.
Li
,
J.
Yan
,
X.
Liu
,
G.
Ouyang
, “
Using permutation entropy to measure the changes in EEG signals during absence seizures
,”
Entropy
16
,
3049
3061
(
2014
).
36.
F.
Montani
,
E. B.
Deleglise
, and
O. A.
Rosso
, “
Efficiency characterization of a large neuronal network: A causal information approach
,”
Phys. A
401
,
58
70
(
2014
).
37.
F.
Montani
and
O. A.
Rosso
, “
Entropy-complexity characterization of brain development in chickens
,”
Entropy
16
,
4677
4692
(
2014
).
38.
Z.
Liang
,
Y.
Wang
,
X.
Sun
,
D.
Li
,
L. J.
Voss
,
J. W.
Sleigh
,
S.
Hagihira
, and
X.
Li
, “
EEG entropy measures in anesthesia
,”
Front. Comput. Neurosci.
9
,
16
(
2015
).
39.
F.
Montani
,
R.
Baravalle
,
L.
Montangie
, and
O. A.
Rosso
, “
Causal information quantification of prominent dynamical features of biological neurons
,”
Philos. Trans. R. Soc. A
373
(
2056
),
20150109
(
2015
).
40.
F.
Montani
,
O. A.
Rosso
,
F. S.
Matias
,
S. L.
Bressler
, and
C. R.
Mirasso
, “
A symbolic in-formation approach to determine anticipated and delayed synchronization in neuronal circuit models
,”
Philos. Trans. R. Soc.A
373
(
2056
),
20150110
(
2015
).
41.
L.
Zunino
,
M.
Zanin
,
B. M.
Tabak
,
D. G.
Pérez
, and
O. A.
Rosso
, “
Forbidden patterns, permutation entropy and stock market inefficiency
,”
Phys. A
388
(
14
),
2854
2864
(
2009
).
42.
L.
Zunino
,
M.
Zanin
,
B. M.
Tabak
,
D. G.
Pérez
, and
O. A.
Rosso
, “
Complexity–entropy causality plane: A useful approach to quantify the stock market inefficiency
,”
Phys. A
389
(
9
),
1891
1901
(
2010
).
43.
A. F.
Bariviera
,
M. B.
Guercio
,
L. B.
Martinez
, and
O. A.
Rosso
, “
The (in)visible hand in the Libor market: An information theory approach
,”
Eur. Phys. J. B
88
,
208
(
2015
).
44.
A. F.
Bariviera
,
M. B.
Guercio
,
L. B.
Martinez
, and
O. A.
Rosso
, “
A permutation information theory tour through different interest rate maturities: The Libor case
,”
Philos. Trans. R. Soc. A
373
(
2056
),
20150119
(
2015
).
45.
A. F.
Bariviera
,
M. B.
Guercio
,
L. B.
Martinez
, and
O. A.
Rosso
, “
Libor at crossroads: Stochastic switching detection using information theory quantifiers
,”
Chaos Solitons Fractals
88
,
172
182
(
2016
).
46.
L.
Zunino
,
A. F.
Bariviera
,
M. B.
Guercio
,
L. B.
Martinez
, and
O. A.
Rosso
, “
Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy
,”
Phys. A
456
,
1
9
(
2016
).
47.
O. A.
Rosso
,
L. C.
Carpi
,
P. M.
Saco
,
M.
Gómez Ravetti
,
A.
Plastino
, and
H.
Larrondo
, “
Causality and the entropy-complexity plane: Robustness and missing ordinal patterns
,”
Phys. A
391
,
42
55
(
2012
).
48.
O. A.
Rosso
,
L. C.
Carpi
,
P. M.
Saco
,
M.
Gómez Ravetti
,
H.
Larrondo
, and
A.
Plastino
, “
The Amigó paradigm of forbidden/missing patterns: A detailed analysis
,”
Eur. Phys. J. B
85
,
419
430
(
2012
).
49.
O. A.
Rosso
,
F.
Olivares
,
L.
Zunino
,
L.
De Micco
,
A. L. L
Aquino
,
A.
Plastino
, and
H. A.
Larrondo
, “
Characterization of chaotic maps using the permutation Bandt-Pompe probability distribution
,”
Eur. Phys. J. B
86
,
116
129
(
2013
).
50.
J. M.
Amigó
,
S.
Zambrano
, and
M. A. F
Sanjúan
, “
True and false forbidden patterns in deterministic and random dynamics
,”
Europhys. Lett.
79
,
50001
(
2007
).
51.
J. M.
Amigó
,
Permutation Complexity in Dynamical Systems
(
Springer
,
Berlin
,
2010
).
52.
L. C.
Carpi
,
P. M.
Saco
, and
O. A.
Rosso
, “
Missing ordinal patterns in correlated noises
,”
Phys. A
389
,
2020
2029
(
2010
).
53.
H.
Wold
,
A Study in the Analysis of Stationary Time Series
(
Almqvist and Wiksell
,
Upsala
,
1938
).
54.
S.
Cambanis
,
C. D.
Hardin
, and
A.
Weron
, “
Innovations and Wold decompositions of stable sequences
,”
Probab. Theory Relat. Fields
79
,
1
27
(
1988
).
55.
L.
Zunino
,
F.
Olivares
,
F.
Scholkmann
, and
O. A.
Rosso
, “
Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions
,”
Phys. Lett. A
381
,
1883
1892
(
2017
).
56.
C.
Bian
,
C.
Qin
,
Q. Y. D
Ma
, and
Q.
Shen
, “
Modified permutation-entropy analysis of heartbeat dynamics
,”
Phys. Rev. E
85
,
021906
(
2012
).
57.
M.
Riedl
,
A.
Müller
, and
N.
Wessel
, “
Practical considerations of permutation entropy
,”
Eur. Phys. J. Special Topics
222
,
249
262
(
2013
).
58.
C.
Bandt
and
F.
Shiha
, “
Order patterns in time series
,”
J. Time Ser. Anal.
28
,
646
(
2007
).
59.
F.
Olivares
,
A.
Plastino
, and
O. A.
Rosso
, “
Ambiguities in Bandt-Pompe’s methodology for local entropic quantifiers
,”
Phys. A
391
,
2518
2526
(
2012
).
60.
O. A.
Rosso
,
F.
Olivares
, and
A.
Plastino
, “
Noise vs. chaos in a causal Fisher-Shannon plane
,”
Pap. Phys.
7
,
070006
(
2015
).
61.
J. B.
Brissaud
, “
The meaning of entropy
,”
Entropy
7
,
68
96
(
2005
).
62.
C. E.
Shannon
, “
A mathematical theory of communication
,”
Bell Syst. Technol. J.
27
,
379
423
(
1948
). 623–656.
63.
C. E.
Shannon
and
W.
Weaver
,
The Mathematical Theory of Communication
(
University of Illinois Press
,
Champaign, IL
,
1949
).
64.
A. R.
Donders
,
G. J.
van der Heijden
,
T.
Stijnen
, and
K. G.
Moons
, “
Review: A gentle introduction to imputation of missing values
,”
J. Clin. Epidemiol.
59
,
1087
1091
(
2006
).
65.
C.
Masoller
and
O. A.
Rosso
, “
Quantifying the complexity of the delayed logistic map
,”
Philos. Trans. R. Soc. A
369
,
425
438
(
2011
).
66.
B.
Luque
,
L.
Lacasa
,
F.
Ballesteros
, and
J.
Luque
, “
Horizontal visibility graphs: Exact results for random time series
,”
Phys. Rev. E
80
,
046103
(
2009
).

Supplementary Material

You do not currently have access to this content.