A basic systems question concerns the concept of closure, meaning autonomy (closed) in the sense of describing the (sub)system as fully consistent within itself. Alternatively, the system may be nonautonomous (open), meaning it receives influence from an outside subsystem. We assert here that the concept of information flow and the related concept of causation inference are summarized by this simple question of closure as we define herein. We take the forecasting perspective of Weiner-Granger causality that describes a causal relationship exists if a subsystem's forecast quality depends on considering states of another subsystem. Here, we develop a new direct analytic discussion, rather than a data oriented approach. That is, we refer to the underlying Frobenius-Perron (FP) transfer operator that moderates evolution of densities of ensembles of orbits, and two alternative forms of the restricted Frobenius-Perron operator, interpreted as if either closed (deterministic FP) or not closed (the unaccounted outside influence seems stochastic and we show correspondingly requires the stochastic FP operator). Thus follows contrasting the kernels of the variants of the operators, as if densities in their own rights. However, the corresponding differential entropy comparison by Kullback-Leibler divergence, as one would typically use when developing transfer entropy, becomes ill-defined. Instead, we build our Forecastability Quality Metric (FQM) upon the “symmetrized” variant known as Jensen-Shannon divergence, and we are also able to point out several useful resulting properties. We illustrate the FQM by a simple coupled chaotic system. Our analysis represents a new theoretical direction, but we do describe data oriented directions for the future.

1.
D. F.
Hendry
, “
The nobel memorial prize for clive W.J. Granger
,”
Scand. J. Econ.
106
,
187
213
(
2004
).
2.
C. W.
Granger
, “
Investigating causal relations by econometric models and cross-spectral methods
,”
Econometrica
37
,
424
438
(
1969
).
3.
C. W.
Granger
, “
Some recent development in a concept of causality
,”
J. Econom.
39
,
199
211
(
1988
).
4.
L.
Barnett
,
A. B.
Barrett
, and
A. K.
Seth
, “
Granger causality and transfer entropy are equivalent for gaussian variables
,”
Phys. Rev. Lett.
103
,
238701
(
2009
).
5.
N.
Wiener
,
Modern Mathematics for Engineers
(
McGraw-Hill
,
New York
,
1956
).
6.
T.
Schreiber
, “
Measuring information transfer
,”
Phys. Rev. Lett.
85
,
461
(
2000
).
7.
E. M.
Bollt
and
N.
Santitissadeekorn
,
Applied and Computational Measurable Dynamics
(
SIAM
,
2013
).
8.
J.
Sun
and
E. M.
Bollt
, “
Causation entropy identifies indirect influences, dominance of neighbors and anticipatory couplings
,”
Physica D
267
,
49
57
(
2014
).
9.
J.
Sun
,
D.
Taylor
, and
E. M.
Bollt
, “
Causal network inference by optimal causation entropy
,”
SIAM J. Appl. Dyn. Syst.
14
,
73
106
(
2015
).
10.
J.
Sun
,
C.
Cafaro
, and
E. M.
Bollt
, “
Identifying the coupling structure in complex systems through the optimal causation entropy principle
,”
Entropy
16
,
3416
3433
(
2014
).
11.
C.
Cafaro
,
W. M.
Lord
,
J.
Sun
, and
E. M.
Bollt
, “
Causation entropy from symbolic representations of dynamical systems
,”
Chaos
25
,
043106
(
2015
).
12.
G.
Sugihara
,
R.
May
,
H.
Ye
,
C.-H.
Hsieh
,
E.
Deyle
,
M.
Fogarty
, and
S.
Munch
, “
Detecting causality in complex ecosystems
,”
Science
338
,
1227079
(
2012
).
13.
B.
Russell
, in
Proceedings of the Aristotelian Society
(
JSTOR
,
1912
), Vol.
13
, pp.
1
26
.
14.
J.
Pearl
,
Causality
(
Cambridge University Press
,
2009
).
15.
D. A.
Smirnov
, “
Spurious causalities with transfer entropy
,”
Phys. Rev. E
87
,
042917
(
2013
).
16.
D.
Kugiumtzis
, “
Partial transfer entropy on rank vectors
,”
Eur. Phys. J.
222
,
401
420
(
2013
).
17.
M.
Prokopenko
,
J. T.
Lizier
, and
D. C.
Price
, “
On thermodynamic interpretation of transfer entropy
,”
Entropy
15
,
524
543
(
2013
).
18.
M.
Staniek
and
K.
Lehnertz
, “
Symbolic transfer entropy
,”
Phys. Rev. Lett.
100
,
158101
(
2008
).
19.
L.
Barnett
and
T.
Bossomaier
, “
Transfer entropy as a log-likelihood ratio
,”
Phys. Rev. Lett.
109
,
138105
(
2012
).
20.
J.
Runge
,
J.
Heitzig
,
V.
Petoukhov
, and
J.
Kurths
, “
Escaping the curse of dimensionality in estimating multivariate transfer entropy
,”
Phys. Rev. Lett.
108
,
258701
(
2012
).
21.
X. S.
Liang
and
R.
Kleeman
, “
Information transfer between dynamical system components
,”
Phys. Rev. Lett.
95
,
244101
244101
(
2005
).
22.
E. M.
Bollt
, “
Synchronization as a process of sharing and transferring information
,”
Int. J. Bifurcat. Chaos
22
,
1250261
(
2012
).
23.
A.
Lasota
and
M. C.
Mackey
,
Probabilistic Properties of Deterministic Systems
(
Cambridge University Press
,
1985
).
24.
S.
Ulam
, Problems of Modern Mathematics (New York, 1964), science editions, originally published as: A Collection of Mathematical Problems (1960).
25.
T.-Y.
Li
, “
Finite approximation for the Frobenius-Perron operator. A solution to Ulam’s conjecture
,”
J. Approx. Theory
17
,
177
186
(
1976
).
26.
G.
Froyland
, “
Ulam’s method for random interval maps
,”
Nonlinearity
12
,
1029
(
1999
).
27.
F. Y.
Hunt
, “
Unique ergodicity and the approximation of attractors and their invariant measures using Ulam’s method
,”
Nonlinearity
11
,
307
(
1998
).
28.
R.
Murray
, “
Ulam’s method for some non-uniformly expanding maps
,”
Discrete Cont. Dyn. Syst.
26
,
1007
1018
(
2010
).
29.
J.
Matousek
,
Using the Borsuk-Ulamtheorem: Lectures on Topological Methods in Combinatorics and Geometry
(
Springer Science & Business Media
,
2008
).
30.
L.
Billings
and
E.
Bollt
, “
Probability density functions of some skew tent maps
,”
Chaos Solitons Fractals
12
,
365
376
(
2001
).
31.
E. M.
Bollt
,
A.
Luttman
,
S.
Kramer
, and
R.
Basnayake
, “
Measurable dynamics analysis of transport in the gulf of Mexico during the oil spill
,”
Int. J. Bifurcat. Chaos
22
,
1230012
(
2012
).
32.
E. M.
Bollt
, “
Controlling chaos and the inverse Frobenius-Perron problem: global stabilization of arbitrary invariant measures
,”
Int. J. Bifurcat. Chaos
10
,
1033
1050
(
2000
).
33.
E. M.
Bollt
,
L.
Billings
, and
I. B.
Schwartz
, “
A manifold independent approach to understanding transport in stochastic dynamical systems
,”
Physica D
173
,
153
177
(
2002
).
34.
J.-P.
Eckmann
and
D.
Ruelle
, “
Ergodic theory of chaos and strange attractors
,” in
The Theory of Chaotic Attractors
(
Springer
,
1985
), pp.
273
312
.
35.
T.
Sauer
,
J. A.
Yorke
, and
M.
Casdagli
, “
Embedology
,”
J. Stat. Phys.
65
,
579
616
(
1991
).
36.
E. M.
Bollt
, “
Model selection, confidence and scaling in predicting chaotic time-series
,”
Int. J. Bifurcat. Chaos
10
,
1407
1422
(
2000
).
37.
T. M.
Cover
and
J. A.
Thomas
,
Elements of Information Theory
(
John Wiley & Sons
,
2012
).
38.
S. M.
Ulam
,
Problems in Modern Mathematics
, 2nd ed. (
John Wiley & Sons, Inc.
,
New York
,
1964
), pp.
xvii+150
.
39.
G.
Froyland
, “
Finite approximation of Sinai-Bowen-Ruelle measures for Anosov systems in two dimensions
,”
Random Comput. Dynam.
3
,
251
263
(
1995
), available at http://web.maths.unsw.edu.au/~froyland/a1362773.pdf
40.
G.
Froyland
, “
Approximating physical invariant measures of mixing dynamical systems in higher dimensions
,”
Nonlinear Anal.
32
,
831
860
(
1998
).
41.
A.
Boyarsky
and
Y.-S.
Lou
, “
Approximating measures invariant under higher-dimensional chaotic transformations
,”
J. Approx. Theory
65
,
231
244
(
1991
).
42.
A.
Boyarsky
and
P.
Gora
,
Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension
(
Springer Science & Business Media
,
2012
).
43.
E. M.
Bollt
and
J. D.
Skufca
,
Encyclopedia of Nonlinear Science
(
Routledge
,
New York
,
2005
).
44.
E.
Bollt
,
P.
Góra
,
A.
Ostruszka
, and
K.
Życzkowski
, “
Basis Markov partitions and transition matrices for stochastic systems
,”
SIAM J. Appl. Dyn. Syst.
7
,
341
360
(
2008
).
45.
P.
Cvitanović
, “
Periodic orbits as the skeleton of classical and quantum chaos
,”
Physica D
51
,
138
151
(
1991
).
46.
M.
Dellnitz
,
A.
Hohmann
,
O.
Junge
, and
M.
Rumpf
, “
Exploring invariant sets and invariant measures
,”
Chaos
7
,
221
228
(
1997
).
47.
F. Y.
Hunt
and
W. M.
Miller
, “
On the approximation of invariant measures
,”
J. Stat. Phys.
66
,
535
548
(
1992
).
48.
N.
Santitissadeekorn
and
E.
Bollt
, “
The infinitesimal operator for the semigroup of the Frobenius-Perron operator from image sequence data: Vector fields and transport barriers from movies
,”
Chaos
17
,
023126
(
2007
).
49.
L.
Arnold
,
Random Dynamical Systems
(
Springer Science & Business Media
,
2013
).
50.
C.
Bose
and
R.
Murray
,
The exact rate of approximation in Ulam’s method
,
Discrete Cont. Dyn. Syst. A
7
,
219
235
(
2001
).
51.
J.
Ding
,
T. Y.
Li
, and
A.
Zhou
, “
Finite approximations of Markov operators
,”
J. Comput. Appl. Math.
147
,
137
152
(
2002
).
52.
J.
Ding
and
A.
Zhou
, “
A finite element method for the Frobenius-Perron operator equation
,”
Appl. Math. Comput.
102
,
155
164
(
1999
).
53.
J.
Ding
and
A.
Zhou
, “
Finite approximations of Frobenius-Perron operators. A solution of Ulam’s conjecture to multi-dimensional transformations
,”
Physica D
92
,
61
68
(
1996
).
54.
M.
Menéndez
,
J.
Pardo
,
L.
Pardo
, and
M.
Pardo
, “
The Jensen-Shannon divergence
,”
J. Franklin Inst.
334
,
307
318
(
1997
).
55.
J.
Lin
, “
Divergence measures based on the Shannon entropy
,”
IEEE Trans. Infor. Theory
37
,
145
151
(
1991
).
56.
B.
Fuglede
and
F.
Topsoe
, “Jensen-Shannon divergence and Hilbert space embedding,” in International Symposium on Information Theory, 2004, ISIT 2004 (IEEE, 2004), p. 31.
57.
D. M.
Endres
and
J. E.
Schindelin
, “
A new metric for probability distributions
,”
IEEE Trans. Infor. Theory
49
,
1858
1860
(
2003
).
58.
I.
Vajda
 et al., “
Anew class of metric divergences on probability spaces and and its statistical applications
,”
Ann. Inst. Statist. Math.
55
,
639
653
(
2003
).
59.
M. S.
Pinsker
, Information and Information Stability of Random Variables and Processes (1960).
60.
E.
Ordentlich
and
M. J.
Weinberger
, “
A distribution dependent refinement of Pinsker’s inequality
,”
IEEE Trans. Inf. Theory
51
,
1836
1840
(
2005
).
61.
G.
Tkacik
,
C. G.
Callan, Jr.
, and
W.
Bialek
, “
Information capacity of genetic regulatory elements
,”
Phys. Rev. E
78
,
011910
(
2008
).
62.
K.
Kaneko
, “Coupled map lattice,” in Chaos, Order, and Patterns (Springer, 1991), pp. 237–247.
63.
S. D.
Pethel
,
N. J.
Corron
, and
E.
Bollt
, “
Symbolic dynamics of coupled map lattices
,”
Phys. Rev. Lett.
96
,
034105
(
2006
).
You do not currently have access to this content.