The identification of directional couplings (or drive-response relationships) in the analysis of interacting nonlinear systems is an important piece of information to understand their dynamics. This task is especially challenging when the analyst’s knowledge of the systems reduces virtually to time series of observations. Spurred by the success of Granger causality in econometrics, the study of cause-effect relationships (not to be confounded with statistical correlations) was extended to other fields, thus favoring the introduction of further tools such as transfer entropy. Currently, the research on old and new causality tools along with their pitfalls and applications in ever more general situations is going through a time of much activity. In this paper, we re-examine the method of the joint distance distribution to detect directional couplings between two multivariate flows. This method is based on the forced Takens theorem, and, more specifically, it exploits the existence of a continuous mapping from the reconstructed attractor of the response system to the reconstructed attractor of the driving system, an approach that is increasingly drawing the attention of the data analysts. The numerical results with Lorenz and Rössler oscillators in three different interaction networks (including hidden common drivers) are quite satisfactory, except when phase synchronization sets in. They also show that the method of the joint distance distribution outperforms the lowest dimensional transfer entropy in the cases considered. The robustness of the results to the sampling interval, time series length, observational noise, and metric is analyzed too.

1.
M.
Bunge
,
Causality and Modern Science
, 3rd ed. (
Dover Publications
,
New York
,
2011
).
2.
N.
Wiener
, in
Modern Mathematics for Engineers
, edited by
E. F.
Beckenbach
(
McGraw-Hill
,
New York
,
1956
).
3.
C. W. J.
Granger
, “
Investigating causal relations by econometric and cross-spectral methods
,”
Econometrica
37
,
424
438
(
1969
).
4.
T.
Schreiber
, “
Measuring information transfer
,”
Phys. Rev. Lett.
85
,
461
464
(
2000
).
5.
L.
Barnett
,
A. B.
Barret
, and
A. K.
Seth
, “
Granger causality and transfer entropy are equivalent for Gaussian variables
,”
Phys. Rev. Lett.
103
,
238701
(
2009
).
6.
L. M.
Pecora
and
T. L.
Carroll
, “
Synchronization in chaotic systems
,”
Phys. Rev. Lett.
64
,
821
824
(
1990
).
7.
F.
Takens
, “Detecting strange attractors in turbulence,” in
Dynamical Systems and Turbulence
, Lecture Notes in Mathematics Vol. 898, edited by
D. A.
Rand
and
L. S.
Young
(
Springer Verlag
,
1981
), pp.
366
381
.
8.
Y.
Hirata
,
J. M.
Amigó
,
Y.
Matsuzaka
,
R.
Yokota
,
H.
Mushiake
, and
K.
Aihara
, “
Detecting causality by combined use of multiple methods: Climate and brain examples
,”
PLoS ONE
11
,
e0158572
(
2016
).
9.
C. W. J.
Granger
, “
Testing for causality: A personal viewpoint
,”
J. Econ. Dyn. Control
2
,
329
352
(
1980
).
10.
C. W. J.
Granger
, “
Some recent developments in a concept of causality
,”
J. Econom.
39
,
199
211
(
1988
).
11.
J.
Runge
,
J.
Heitzig
,
N.
Marwan
, and
J.
Kurths
, “
Quantifying causal coupling strength: A lag-specific measure for multivariate time series related to transfer entropy
,”
Phys. Rev. E
86
,
061121
(
2012
).
12.
J. I.
Deza
,
M.
Barreiro
, and
C.
Masoller
, “
Inferring interdependencies in climate networks constructed at inter-annual, intra-season and longer time scales
,”
Eur. Phys. J. Spec. Top.
222
,
511
523
(
2013
).
13.
M.
Le Van Quyen
,
J.
Martinerie
,
C.
Adam
, and
F. J.
Varela
, “
Nonlinear analyses of interictal EEG map the brain interdependences in human focal epilepsy
,”
Physica D
127
,
250
266
(
1999
).
14.
J.
Arnhold
,
P.
Grassberger
,
K.
Lehnertz
, and
C. E.
Elger
, “
A robust method for detecting interdependences: Application to intracranially recorded EEG
,”
Physica D
134
,
419
430
(
1999
).
15.
J. M.
Amigó
,
R.
Monetti
,
N.
Tort-Colet
, and
M. V.
Sanchez-Vives
, “
Infragranular layers lead information flow during slow oscillations according to information directionality indicators
,”
J. Comput. Neurosci.
39
,
53
62
(
2015
).
16.
L.
Faes
,
G.
Nollo
, and
A.
Porta
, “
Information-based detection of nonlinear Granger causality in multivariate processes via a nonuniform embedding technique
,”
Phys. Rev. E
83
,
051112
(
2011
).
17.
J. M.
Amigó
,
R.
Monetti
,
B.
Graff
, and
G.
Graff
, “
Computing algebraic transfer entropy and coupling directions via transcripts
,”
Chaos
26
,
113115
(
2016
).
18.
A.
Porta
and
L.
Faes
, “
Wiener–Granger causality in network physiology with applications to cardiovascular control and neuroscience
,”
Proc. IEEE
104
,
282
309
(
2016
).
19.
R.
Marschinski
and
H.
Kantz
, “
Analysing the information flow between financial time series
,”
Eur. Phys. J. B
30
,
275
281
(
2002
).
20.
A.
Papana
,
C.
Kyrtsou
,
D.
Kugiumtzis
, and
C.
Diks
, “
Assessment of resampling methods for causality testing: A note on the US inflation behavior
,”
PLoS ONE
12
,
e0180852
(
2017
).
21.
K.
Hlaváčková-Schindler
,
M.
Paluš
,
M.
Vejmelka
, and
J.
Bhattacharya
, “
Causality detection based on information-theoretic approaches in time series analysis
,”
Phys. Rep.
441
,
1
46
(
2007
).
22.
J.
Runge
,
J.
Heitzig
,
V.
Petoukhov
, and
J.
Kurths
, “
Escaping the curse of dimensionality in estimating multivariate transfer entropy
,”
Phys. Rev. Lett.
108
,
258701
(
2012
).
23.
M.
Paluš
and
M.
Vejmelka
, “
Directionality of coupling from bivariate time series: How to avoid false causalities and missed connections
,”
Phys. Rev. E
75
,
056211
(
2007
).
24.
D. A.
Smirnov
and
B. P.
Bezruchko
, “
Spurious causalities due to low temporal resolution: Towards detection of bidirectional coupling from time series
,”
Eur. Phys. Lett.
100
,
10005
(
2012
).
25.
D. A.
Smirnov
, “
Spurious causalities with transfer entropy
,”
Phys. Rev. E
87
,
042917
(
2013
).
26.
C.
Cafaro
,
W. M.
Lord
,
J.
Sun
, and
E. M.
Bollt
, “
Causation entropy from symbolic representations of dynamical systems
,”
Chaos
25
,
043106
(
2015
).
27.
S.
Frenzel
and
B.
Pompe
, “
Partial mutual information for coupling analysis of multivariate time series
,”
Phys. Rev. Lett.
99
,
204101
(
2007
).
28.
J.
Sun
and
E. M.
Bollt
, “
Causation entropy identifies indirect influences, dominance of neighbors and anticipatory couplings
,”
Physica D
267
,
49
57
(
2014
).
29.
D. W.
Hahs
and
S. D.
Pethel
, “
Distinguishing anticipation from causality: Anticipatory bias in the estimation of information flow
,”
Phys. Rev. Lett.
107
,
128701
(
2011
).
30.
D.
Janzing
,
D.
Balduzzi
,
M.
Grosse-Wentrup
, and
B.
Scholkopf
, “
Quantifying causal influences
,”
Ann. Stat.
41
,
2324
2358
(
2013
).
31.
D.
Coufal
,
J.
Jakubík
,
N.
Jajcay
,
J.
Hlinka
,
A.
Krakovská
, and
M.
Paluš
, “
Detection of coupling delay: A problem not yet solved
,”
Chaos
27
,
083109
(
2017
).
32.
R. G.
James
,
N.
Barnett
, and
J.
Crutchfield
, “
Information flows? A critique of transfer entropies
,”
Phys. Rev. Lett.
116
,
238701
(
2016
).
33.
N.
Ay
and
D.
Polani
, “
Information flow in causal networks
,”
Adv. Complex Syst.
11
,
17
41
(
2008
).
34.
B.
Pompe
and
J.
Runge
, “
Momentary information transfer as a coupling measure of time series
,”
Phys. Rev. E
83
,
051122
(
2011
).
35.
D.
Darmon
and
P. E.
Rapp
, “
Specific transfer entropy and other state-dependent transfer entropies for continuous-state input-output systems
,”
Phys. Rev. E
96
,
022121
(
2017
).
36.
T. D.
Sauer
,
J. A.
Yorke
, and
M.
Castagli
, “
Embedology
,”
J. Stat. Phys.
65
,
579
616
(
1991
).
37.
Y.
Hirata
,
T.
Takeuchi
,
S.
Horai
,
H.
Suzuki
, and
K.
Aihara
, “
Parsimonious description for predicting high-dimensional dynamics
,”
Sci. Rep.
5
,
15736
(
2015
).
38.
Y.
Hirata
and
K.
Aihara
, “
Dimensionless embedding for nonlinear time series analysis
,”
Phys. Rev. E
96
,
032219
(
2017
).
39.
J.
Stark
, “
Delay embeddings for forced systems. I: Deterministic forcing
,”
J. Nonlinear Sci.
9
,
255
332
(
1999
).
40.
I.
Vlachos
and
D.
Kugiumtzis
, “
Nonuniform state-space reconstruction and coupling detection
,”
Phys. Rev. E
82
,
016207
(
2010
).
41.
D.
Kugiumtzis
, “
Direct-coupling information measure from nonuniform embedding
,”
Phys. Rev. E
87
,
062918
(
2013
).
42.
N. F.
Rulkov
,
M. M.
Sushchik
,
L. S.
Tsimring
, and
H. D. I.
Abarbanel
, “
Generalized synchronization of chaos in directionally coupled chaotic systems
,”
Phys. Rev. E
51
,
980
994
(
1995
).
43.
S. J.
Schiff
,
P.
So
,
T.
Chang
,
R. E.
Burke
, and
T.
Sauer
, “
Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble
,”
Phys. Rev. E
54
,
6708
6724
(
1996
).
44.
R.
Quian Quiroga
,
J.
Arnhold
, and
P.
Grassberger
, “
Learning driver-response relationships from synchronization patterns
,”
Phys. Rev. E
61
,
5142
5148
(
2000
).
45.
R.
Quian Quiroga
,
A.
Kraskov
,
T.
Kreuz
, and
P.
Grassberger
, “
Performance of different synchronization measures in real data: A case study on electroencephalographic signals
,”
Phys. Rev. E
65
,
041903
(
2002
).
46.
M. C.
Romano
,
M.
Thiel
,
J.
Kurths
, and
C.
Grebogi
, “
Estimation of the direction of the coupling by conditional probabilities of recurrence
,”
Phys. Rev. E
76
,
036211
(
2007
).
47.
Y.
Hirata
and
K.
Aihara
, “
Identifying hidden common causes from bivariate time series: A method using recurrence plots
,”
Phys. Rev. E
81
,
016203
(
2010
).
48.
G.
Sugihara
,
R.
May
,
H.
Ye
,
C.-H.
Hsieh
,
E.
Deyle
,
M.
Fogarty
, and
S.
Munch
, “
Detecting causality in complex ecosystems
,”
Science
338
,
496
500
(
2012
).
49.
D.
Harnack
,
E.
Laminski
,
M.
Schünemann
, and
K. R.
Pawelzik
, “
Topological causality in dynamical systems
,”
Phys. Rev. Lett.
119
,
098301
(
2017
).
50.
H.
Ma
,
S.
Leng
,
C.
Tao
,
X.
Ying
,
J.
Kurths
,
Y.-C.
Lai
, and
W.
Lin
, “
Detection of time delays and directional interactions based on time series from complex dynamical systems
,”
Phys. Rev. E
96
,
01222
(
2017
).
51.
A. M. T.
Ramos
,
A.
Builes-Jaramillo
,
G.
Poveda
,
B.
Goswami
,
E. E. N.
Macau
,
J.
Kurths
, and
N.
Marwan
, “
Recurrence measure of conditional dependence and applications
,”
Phys. Rev. E
95
,
052206
(
2017
).
52.
J. M.
Amigó
,
R.
Monetti
,
T.
Aschenbrenner
, and
W.
Bunk
, “
Transcripts: An algebraic approach to coupled time series
,”
Chaos
22
,
013105
(
2012
).
53.
R.
Monetti
,
J. M.
Amigó
,
T.
Aschenbrenner
, and
W.
Bunk
, “
Permutation complexity of interacting dynamical systems
,”
Eur. Phys. J. Spec. Top.
222
,
421
436
(
2013
).
54.
R.
Monetti
,
W.
Bunk
,
T.
Aschenbrenner
,
S.
Springer
, and
J. M.
Amigó
, “
Information directionality in coupled time series using transcripts
,”
Phys. Rev. E
88
,
022911
(
2013
).
55.
J. M.
Amigó
,
T.
Aschenbrenner
,
W.
Bunk
, and
R.
Monetti
, “
Dimensional reduction of conditional algebraic multi-information via transcripts
,”
Inform. Sci.
278
,
298
310
(
2014
).
56.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
Cambridge, UK
,
2001
).
57.
M.
Thiel
,
M. C.
Romano
,
J.
Kurths
,
M.
Rolfs
, and
R.
Kliegl
, “
Twin surrogates to test for complex synchronisation
,”
Europhys. Lett.
75
,
535
541
(
2006
).
58.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
,
237
329
(
2007
).
You do not currently have access to this content.