Kuramoto oscillators are widely used to explain collective phenomena in networks of coupled oscillatory units. We show that simple networks of two populations with a generic coupling scheme, where both coupling strengths and phase lags between and within populations are distinct, can exhibit chaotic dynamics as conjectured by Ott and Antonsen [Chaos 18, 037113 (2008)]. These chaotic mean-field dynamics arise universally across network size, from the continuum limit of infinitely many oscillators down to very small networks with just two oscillators per population. Hence, complicated dynamics are expected even in the simplest description of oscillator networks.

1.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer
,
Berlin
,
1984
).
2.
H.
Sakaguchi
and
Y.
Kuramoto
,
Prog. Theor. Phys.
76
,
576
(
1986
).
3.
J.
Acebrón
,
L.
Bonilla
,
C.
PérezVicente
,
F.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
,
137
(
2005
).
4.
F. A.
Rodrigues
,
T. K. D.
Peron
,
P.
Ji
, and
J.
Kurths
,
Phys. Rep.
610
,
1
(
2016
).
5.
S.
Watanabe
and
S. H.
Strogatz
,
Phys. Rev. Lett.
70
,
2391
(
1993
).
6.
O. V.
Popovych
,
Y. L.
Maistrenko
, and
P. A.
Tass
,
Phys. Rev. E
71
,
65201
(
2005
).
7.
E.
Ott
and
T. M.
Antonsen
,
Chaos
18
,
037113
(
2008
).
8.
D. M.
Abrams
,
R. E.
Mirollo
,
S. H.
Strogatz
, and
D. A.
Wiley
,
Phys. Rev. Lett.
101
,
084103
(
2008
).
9.
A.
Pikovsky
and
M.
Rosenblum
,
Physica D
240
,
872
(
2011
).
10.
Due to the rotational invariance of the Kuramoto equations (1) we have assumed the Lorentzian to be centered at zero without loss of generality.
11.
M. J.
Panaggio
,
D. M.
Abrams
,
P.
Ashwin
, and
C. R.
Laing
,
Phys. Rev. E
93
,
012218
(
2016
).
12.
E. A.
Martens
,
C.
Bick
, and
M. J.
Panaggio
,
Chaos
26
,
094819
(
2016
).
13.
C.-U.
Choe
,
J.-S.
Ri
, and
R.-S.
Kim
,
Phys. Rev. E
94
,
032205
(
2016
).
14.
S. A.
Marvel
,
R. E.
Mirollo
, and
S. H.
Strogatz
,
Chaos
19
,
043104
(
2009
).
15.
C.
Bick
,
M.
Timme
,
D.
Paulikat
,
D.
Rathlev
, and
P.
Ashwin
,
Phys. Rev. Lett.
107
,
244101
(
2011
).
16.
P.
So
and
E.
Barreto
,
Chaos
21
,
033127
(
2011
).
17.
M.
Komarov
and
A.
Pikovsky
,
Phys. Rev. Lett.
110
,
134101
(
2013
).
18.
D.
Pazó
and
E.
Montbrió
,
Phys. Rev. X
4
,
011009
(
2014
).
19.
C.
Bick
,
P.
Ashwin
, and
A.
Rodrigues
,
Chaos
26
,
094814
(
2016
).
20.
S.
Olmi
,
E. A.
Martens
,
S.
Thutupalli
, and
A.
Torcini
,
Physical Review E
92
,
030901
(
2015
).
21.
Y. L.
Maistrenko
,
S.
Brezetsky
,
P.
Jaros
,
R.
Levchenko
, and
T.
Kapitaniak
,
Phys Rev E
95
,
010203
(
2017
).
22.
E. A.
Martens
,
S.
Thutupalli
,
A.
Fourriere
, and
O.
Hallatschek
,
Proc. Natl. Acad. Sci.
110
,
10563
(
2013
).
23.
C.
Bick
,
M.
Sebek
, and
I. Z.
Kiss
,
Phys. Rev. Lett.
119
,
168301
(
2017
).
24.
E. J.
Doedel
,
R. C.
Paffenroth
,
A. R.
Champneys
,
T. F.
Fairgrieve
,
Y. A.
Kuznetsov
,
B. E.
Oldeman
,
B.
Sandstede
, and
X. J.
Wang
, AUTO2000: Software for Continuation and Bifurcation Problems in Ordinary Differential Equations, Technical Report (California Institute of Technology, Pasadena, CA, 2000).
25.
E.
Ott
and
T. M.
Antonsen
,
Chaos
19
,
023117
(
2009
).
26.
R. E.
Mirollo
,
Chaos
22
,
043118
(
2012
).
27.
A.
Pikovsky
and
M.
Rosenblum
,
Phys. Rev. Lett.
101
,
264103
(
2008
).
28.
P.
Ashwin
and
O.
Burylko
,
Chaos
25
,
013106
(
2015
).
29.
C.
Bick
and
P.
Ashwin
,
Nonlinearity
29
,
1468
(
2016
).
30.
C.
Bick
,
J. Nonlinear Sci.
27
,
605
(
2017
).
31.
M.
Wolfrum
,
S. V.
Gurevich
, and
O. E.
Omel’chenko
,
Nonlinearity
29
,
257
(
2016
).
32.
J. S. W.
Lamb
and
J. A. G.
Roberts
,
Physica D
112
,
1
(
1998
).
33.
V.
Vlasov
,
M.
Rosenblum
, and
A.
Pikovsky
,
J. Phys. A: Math. Theor.
49
,
31LT02
(
2016
).
34.
E. A.
Martens
,
Phys. Rev. E
82
,
016216
(
2010
).
35.
H.
Schmidt
,
G.
Petkov
,
M. P.
Richardson
, and
J. R.
Terry
,
PLoS Comp. Bio.
10
,
e1003947
(
2014
).
36.
J.
Cabral
,
M. L.
Kringelbach
, and
G.
Deco
,
NeuroImage
160
,
84
(
2017
).
You do not currently have access to this content.