Based on 1-min price changes recorded since year 2012, the fluctuation properties of the rapidly emerging Bitcoin market are assessed over chosen sub-periods, in terms of return distributions, volatility autocorrelation, Hurst exponents, and multiscaling effects. The findings are compared to the stylized facts of mature world markets. While early trading was affected by system-specific irregularities, it is found that over the months preceding April 2018 all these statistical indicators approach the features hallmarking maturity. This can be taken as an indication that the Bitcoin market, and possibly other cryptocurrencies, carry concrete potential of imminently becoming a regular market, alternative to the foreign exchange. Since high-frequency price data are available since the beginning of trading, the Bitcoin offers a unique window into the statistical characteristics of a market maturation trajectory.

1.
C.
Menger
, “
On the origin of money
,”
Econ. J.
2
,
239
255
(
1892
).
2.
P.
Bak
,
S. F.
Nrrelykke
, and
M.
Shubik
, “
Money and Goldstone modes
,”
Quant. Financ.
1
,
186
190
(
2001
).
3.
C.
Lapavitsas
, “
The emergence of money in commodity exchange, or money as monopolist of the ability to buy
,”
Rev. Polit. Econ.
17
,
549
569
(
2005
).
4.
S.
Ghashghaie
,
W.
Breymann
,
J.
Peinke
,
P.
Talkner
, and
Y.
Dodge
, “
Turbulent cascades in foreign exchange markets
,”
Nature
381
,
767
770
(
1996
).
5.
S.
Drożdż
,
J.
Kwapień
,
P.
Oświȩcimka
, and
R.
Rak
, “
The foreign exchange market: Return distributions, multifractality, anomalous multifractality and the Epps effect
,”
New. J. Phys.
12
,
105003
(
2010
).
6.
J.
Kwapień
and
S.
Drożdż
, “
Physical approach to complex systems
,”
Phys. Rep.
515
,
115
226
(
2012
).
7.
A.
Yasutomi
, “
The emergence and collapse of money
,”
Physica D
82
,
180
194
(
1995
).
8.
A.
Yasutomi
, “
Itinerancy of money
,”
Chaos
13
,
1148
1164
(
2003
).
9.
E
Samanidou
,
E
Zschischang
,
D
Stauffer
, and
T
Lux
, “
Agent-based models of financial markets
,”
Rep. Prog. Phys.
70
,
409
450
(
2007
).
10.
A. Z.
Górski
,
S.
Drożdż
, and
P.
Oświȩcimka
, “
Modelling emergence of money
,”
Acta Phys. Pol. A
117
,
676
680
(
2010
).
11.
P.
Oświȩcimka
,
S.
Drożdż
,
R.
Gȩbarowski
,
A. Z.
Górski
, and
J.
Kwapień
, “
Multiscaling edge effects in an agent–based money emergence model
,”
Acta Phys. Pol. B
46
,
1579
1592
(
2015
).
12.
A.
Berentsen
and
F.
Schär
, “
A short introduction to the world of cryptocurrencies
,”
Review
100
,
1
16
(
2018
).
13.
L.
Kristoufek
, “
BitCoin meets Google Trends and Wikipedia: Quantifying the relationship between phenomena of the Internet era
,”
Sci. Rep.
3
,
3415
(
2013
).
14.
J.
Kertesz
and
I.
Kondor
, (Eds.),
Econophysics: An emerging Science
(
Kluwer Academic Publishers
,
Dordrecht
,
1998
).
15.
R.
Cont
, “
Empirical properties of asset returns: Stylized facts and statistical issues
,”
Quant. Financ.
1
,
223
236
(
2001
).
16.
B.
Zheng
,
X.-F.
Jiang
, and
P.-Y.
Ni
, “
A mini-review on econophysics: Comparative study of Chinese and western financial markets
,”
Chinese Phys. B
23
,
078903
(
2014
).
17.
T.
Lux
, “
The stable Paretian hypothesis and the frequency of large returns: An examination of major German stocks
,”
Appl. Fin. Econ.
6
,
463
475
(
1996
).
18.
M. M.
Dacorogna
,
R.
Gencay
,
U. A.
Muller
,
R.
Olsen
, and
O. V.
Pictet
,
An Introduction to High-Frequency Finance
(
Academic Press
,
New York
,
2001
).
19.
P.
Gopikrishnan
,
M.
Meyer
,
L. A. N.
Amaral
, and
H. E.
Stanley
, “
Inverse cubic law for the probability distribution of stock price variations
,”
Eur. Phys. J. B
3
,
139
140
(
1998
) (
Rapid Note
).
20.
P.
Gopikrishnan
,
V.
Plerou
,
L. A. N.
Amaral
,
M.
Meyer
, and
H. E.
Stanley
, “
Scaling of the distribution of fluctuations of financial market indices
,”
Phys. Rev. E
60
,
5305
5316
(
1999
).
21.
X.
Gabaix
,
P.
Gopikrishnan
,
V.
Plerou
, and
H. E.
Stanley
, “
A theory of power-law distributions in financial market fluctuations
,”
Nature
423
,
267
270
(
2003
).
22.
E.
Fama
, “
The behavior of stock-market prices
,”
J. Bus.
38
,
34
105
(
1965
).
23.
R. N.
Mantegna
and
H. E.
Stanley
,
An Introduction to Econophysics: Correlations and Complexity in Finance
(
Cambridge University Press
,
Cambridge
,
2000
).
24.
D.
Grech
and
Z.
Mazur
, “
Can one make any crash prediction in finance using the local Hurst exponent idea?
,”
Physica A
336
,
133
145
(
2004
).
25.
T.
Di Matteo
,
T.
Aste
, and
M. M.
Dacorogna
, “
Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development
,”
J. Bank Financ.
29
,
827
851
(
2005
).
26.
D. O.
Cajueiro
and
B. M.
Tabak
, “
Testing for predictability in equity returns for European transition markets
,”
Econ. Systems
30
,
56
78
(
2006
).
27.
B. M.
Tabak
and
D. O.
Cajueiro
, “
Assessing inefficiency in euro bilateral exchange rates
,”
Physica A
367
,
319
327
(
2006
).
28.
T. C.
Halsey
,
M. H.
Jensen
,
L. P.
Kadanoff
,
I.
Procaccia
, and
B. I.
Shraiman
, “
Fractal measures and their singularities - The characterization of strange sets
,”
Phys. Rev. A
33
,
1141
1151
(
1986
).
29.
P.
Oświȩcimka
,
J.
Kwapień
, and
S.
Drożdż
, “
Multifractality in the stock market: Price increments versus waiting times
,”
Physica A
347
,
626
638
(
2005
).
30.
G.
Oh
,
C.
Eom
,
S.
Havlin
,
W.-S.
Jung
,
F.
Wang
,
H. E.
Stanley
, and
S.
Kim
, “
A multifractal analysis of Asian foreign exchange markets
,”
Eur. Phys. J. B
85
,
214
(
2012
).
31.
S. J. H.
Shahzad
,
S. M.
Nor
,
W.
Mensi
, and
R. R.
Kumar
, “
Examining the efficiency and interdependence of US credit and stock markets through MF-DFA and MF-DXA approaches
,”
Physica A
471
,
351
363
(
2017
).
32.
L.
Calvet
and
A.
Fisher
, “
Multifractality in asset returns: Theory and evidence
,”
Rev. Econ. Stat.
84
,
381
406
(
2002
).
34.
X.
Gabaix
,
P.
Gopikrishnan
,
V.
Plerou
, and
H. E.
Stanley
, “
Institutional investors and stock market volatility
,”
Q. J. Econ.
121
,
461
504
(
2006
).
35.
R.
Rak
,
S.
Drożdż
,
J.
Kwapień
, and
P.
Oświȩcimka
, “
Stock returns versus trading volume: Is the correspondence more general?
,”
Acta Phys. Pol. B
44
,
2035
2050
(
2013
).
36.
Z.
Xu
and
R.
Gencay
, “
Scaling, self-similarity and multifractality in FX markets
,”
Physica A
323
,
578
590
(
2003
).
37.
Z.
Palagyi
and
R. N.
Mantegna
, “
Empirical investigation of stock price dynamics in an emerging market
,”
Physica A
269
,
132
139
(
1999
).
38.
S.
Drożdż
,
J.
Kwapień
,
P.
Oświȩcimka
, and
R.
Rak
, “
Quantitative features of multifractal subtleties in time-series
,”
Europhys. Lett.
88
,
60003
(
2009
).
39.
J. W.
Kantelhardt
,
S. A.
Zschiegner
,
E.
Koscielny-Bunde
,
S.
Havlin
,
A.
Bunde
, and
H. E.
Stanley
, “
Multifractal detrended fluctuation analysis of nonstationary time-series
,”
Physica A
316
,
87
114
(
2002
).
40.
B.
Podobnik
and
H. E.
Stanley
, “
Detrended cross-correlation analysis: A new method for analyzing two nonstationary time-series
,”
Phys. Rev. Lett.
100
,
084102
(
2008
).
41.
W.-X.
Zhou
, “
Multifractal detrended cross-correlation analysis for two nonstationary signals
,”
Phys. Rev. E
77
,
066211
(
2008
).
42.
P.
Oświȩcimka
,
S.
Drożdż
,
M.
Forczek
,
S.
Jadach
, and
J.
Kwapień
, “
Detrended cross-correlation analysis consistently extended to multifractality
,”
Phys. Rev. E
89
,
023305
(
2014
).
43.
P.
Oświȩcimka
,
J.
Kwapień
, and
S.
Drożdż
, “
Wavelet versus detrended fluctuation analysis of multifractal structures
,”
Phys. Rev. E
74
,
016103
(
2006
).
44.
S.
Drożdż
and
P.
Oświȩcimka
, “
Detecting and interpreting distortions in hierarchical organization of complex time-series
,”
Phys. Rev. E
91
,
030902(R)
(
2015
).
45.
J.
Kwapień
,
P.
Oświȩcimka
, and
S.
Drożdż
, “
Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations
,”
Phys. Rev. E
92
,
052815
(
2015
).
46.
J.
Kwapień
,
P.
Oświȩcimka
,
M.
Forczek
, and
S.
Drożdż
, “
Minimum spanning tree filtering of correlations for varying time scales and size of fluctuations
,”
Phys. Rev. E
95
,
052313
(
2017
).
47.
M.
Ausloos
, “
Statistical physics in foreign exchange currency and stock markets
,”
Physica A
285
,
48
65
(
2000
).
48.
T.
Di Matteo
,
T.
Aste
, and
M. M.
Dacorogna
, “
Scaling behaviors in differently developed markets
,”
Physica A
324
,
183
188
(
2003
).
49.
L.
Kristoufek
, “
What are the main drivers of the Bitcoin price? Evidence from wavelet coherence analysis
,”
PLoS ONE
10
,
e0123923
(
2015
).
50.
T.
Schreiber
and
A.
Schmitz
, “
Surrogate times series
,”
Physica D
142
,
346
382
(
2000
).
51.
R.
Rak
,
S.
Drożdż
,
J.
Kwapień
, and
P.
Oświȩcimka
, “
Detrended cross-correlations between returns, volatility, trading activity, and volume traded for the stock market companies
,”
Europhys. Lett.
112
,
48001
(
2015
).
52.
D.
Sornette
,
Why Stock Markets Crash: Critical Events in Complex Financial Systems
(
Princeton University Press
,
Princeton
,
2002
).
53.
S.
Drożdż
,
F.
Grümmer
,
F.
Ruf
, and
J.
Speth
, “
Log-periodic self-similarity: An emerging financial law?
,”
Physica A
324
,
174
182
(
2003
).
54.
M.
Bartolozzi
,
S.
Drożdż
,
D. B.
Leinweber
,
J.
Speth
, and
A. W.
Thomas
, “
Self-similar log-periodic structures in Western Stock Markets from 2000
,”
Int. J. Modern Phys. C
16
,
1347
1361
(
2005
).
You do not currently have access to this content.