The mechanism of atrial fibrillation (AF) maintenance in humans is yet to be determined. It remains controversial whether cardiac fibrillatory dynamics are the result of a deterministic or a stochastic process. Traditional methods to differentiate deterministic from stochastic processes have several limitations and are not reliably applied to short and noisy data obtained during clinical studies. The appearance of missing ordinal patterns (MOPs) using the Bandt-Pompe (BP) symbolization is indicative of deterministic dynamics and is robust to brief time series and experimental noise. Our aim was to evaluate whether human AF dynamics is the result of a stochastic or a deterministic process. We used 38 intracardiac atrial electrograms during AF from the coronary sinus of 10 patients undergoing catheter ablation of AF. We extracted the intervals between consecutive atrial depolarizations (AA interval) and converted the AA interval time series to their BP symbolic representation (embedding dimension 5, time delay 1). We generated 40 iterative amplitude-adjusted, Fourier-transform (IAAFT) surrogate data for each of the AA time series. IAAFT surrogates have the same frequency spectrum, autocorrelation, and probability distribution with the original time series. Using the BP symbolization, we compared the number of MOPs and the rate of MOP decay in the first 1000 timepoints of the original time series with that of the surrogate data. We calculated permutation entropy and permutation statistical complexity and represented each time series on the causal entropy-complexity plane. We demonstrated that (a) the number of MOPs in human AF is significantly higher compared to the surrogate data (2.7 ± 1.18 vs. 0.39 ± 0.28, p < 0.001); (b) the median rate of MOP decay in human AF was significantly lower compared with the surrogate data (6.58 × 10−3vs. 7.79 × 10−3, p < 0.001); and (c) 81.6% of the individual recordings had a rate of decay lower than the 95% confidence intervals of their corresponding surrogates. On the causal entropy-complexity plane, human AF lay on the deterministic part of the plane that was located above the trajectory of fractional Brownian motion with different Hurst exponents on the plane. This analysis demonstrates that human AF dynamics does not arise from a rescaled linear stochastic process or a fractional noise, but either a deterministic or a nonlinear stochastic process. Our results justify the development and application of mathematical analysis and modeling tools to enable predictive control of human AF.

1.
E. J.
Benjamin
,
M. J.
Blaha
,
S. E.
Chiuve
,
M.
Cushman
,
S. R.
Das
,
R.
Deo
,
S. D.
de Ferranti
,
J.
Floyd
,
M.
Fornage
,
C.
Gillespie
,
C. R.
Isasi
,
M. C.
Jimenez
,
L. C.
Jordan
,
S. E.
Judd
,
D.
Lackland
,
J. H.
Lichtman
,
L.
Lisabeth
,
S.
Liu
,
C. T.
Longenecker
,
R. H.
Mackey
,
K.
Matsushita
,
D.
Mozaffarian
,
M. E.
Mussolino
,
K.
Nasir
,
R. W.
Neumar
,
L.
Palaniappan
,
D. K.
Pandey
,
R. R.
Thiagarajan
,
M. J.
Reeves
,
M.
Ritchey
,
C. J.
Rodriguez
,
G. A.
Roth
,
W. D.
Rosamond
,
C.
Sasson
,
A.
Towfighi
,
C. W.
Tsao
,
M. B.
Turner
,
S. S.
Virani
,
J. H.
Voeks
,
J. Z.
Willey
,
J. T.
Wilkins
,
J. H.
Wu
,
H. M.
Alger
,
S. S.
Wong
,
P.
Muntner
, and
American Heart Association Statistics C and Stroke Statistics S
ubcommittee “
Heart disease and stroke statistics-2017 update: A report from the American heart association
,”
Circulation
135
,
e146
e603
(
2017
).
2.
H. S.
Karagueuzian
,
S. S.
Khan
,
W.
Peters
,
W. J.
Mandel
, and
G. A.
Diamond
, “
Nonhomogeneous local atrial activity during acute atrial fibrillation: Spectral and dynamic analysis
,”
Pacing Clin. Electrophysiol.
13
,
1937
1942
(
1990
).
3.
J. L.
Pallisgaard
,
G. H.
Gislason
,
J.
Hansen
,
A.
Johannessen
,
C.
Torp-Pedersen
,
P. V.
Rasmussen
, and
M. L.
Hansen
, “
Temporal trends in atrial fibrillation recurrence rates after ablation between 2005 and 2014: A nationwide Danish cohort study
,”
Eur. Heart J.
39
,
442
449
(
2018
).
4.
S.
Kircher
,
A.
Arya
,
D.
Altmann
,
S.
Rolf
,
A.
Bollmann
,
P.
Sommer
,
N.
Dagres
,
S.
Richter
,
O. A.
Breithardt
,
B.
Dinov
,
D.
Husser
,
C.
Eitel
,
T.
Gaspar
,
C.
Piorkowski
, and
G.
Hindricks
, “
Individually tailored vs. standardized substrate modification during radiofrequency catheter ablation for atrial fibrillation: A randomized study
,”
Europace
(published online
2017
).
5.
S.
Conti
,
R.
Weerasooriya
,
P.
Novak
,
J.
Champagne
,
H. E.
Lim
,
L.
Macle
,
Y.
Khaykin
,
A.
Pantano
, and
A.
Verma
, “
Contact force sensing for ablation of persistent atrial fibrillation: A randomized, multicenter trial
,”
Heart Rhythm
15
,
201
208
(
2018
).
6.
D.
Deng
,
M. J.
Murphy
,
J. B.
Hakim
,
W. H.
Franceschi
,
S.
Zahid
,
F.
Pashakhanloo
,
N. A.
Trayanova
, and
P. M.
Boyle
, “
Sensitivity of reentrant driver localization to electrophysiological parameter variability in image-based computational models of persistent atrial fibrillation sustained by a fibrotic substrate
,”
Chaos
27
,
093932
(
2017
).
7.
G.
Seemann
,
C.
Hoper
,
F. B.
Sachse
,
O.
Dossel
,
A. V.
Holden
, and
H.
Zhang
, “
Heterogeneous three-dimensional anatomical and electrophysiological model of human atria
,”
Philos. Trans. A: Math. Phys. Eng. Sci.
364
,
1465
1481
(
2006
).
8.
O. V.
Aslanidi
,
M. A.
Colman
,
J.
Stott
,
H.
Dobrzynski
,
M. R.
Boyett
,
A. V.
Holden
, and
H.
Zhang
, “
3D virtual human atria: A computational platform for studying clinical atrial fibrillation
,”
Prog. Biophys. Mol. Biol.
107
,
156
168
(
2011
).
9.
E.
Grandi
,
S. V.
Pandit
,
N.
Voigt
,
A. J.
Workman
,
D.
Dobrev
,
J.
Jalife
, and
D. M.
Bers
, “
Human atrial action potential and Ca2+ model: Sinus rhythm and chronic atrial fibrillation
,”
Circ. Res.
109
,
1055
1066
(
2011
).
10.
J. T.
Koivumaki
,
T.
Korhonen
, and
P.
Tavi
, “
Impact of sarcoplasmic reticulum calcium release on calcium dynamics and action potential morphology in human atrial myocytes: A computational study
,”
PLoS Comput. Biol.
7
,
e1001067
(
2011
).
11.
E. T.
Chang
,
Y. T.
Lin
,
T.
Galla
,
R. H.
Clayton
, and
J.
Eatock
, “
A stochastic individual-based model of the progression of atrial fibrillation in individuals and populations
,”
PLoS One.
11
,
e0152349
(
2016
).
12.
Y. T.
Lin
,
E. T.
Chang
,
J.
Eatock
,
T.
Galla
, and
R. H.
Clayton
, “
Mechanisms of stochastic onset and termination of atrial fibrillation studied with a cellular automaton model
,”
J. R. Soc. Interface
14
,
20160968
(
2017
).
13.
A.
Garfinkel
,
P. S.
Chen
,
D. O.
Walter
,
H. S.
Karagueuzian
,
B.
Kogan
,
S. J.
Evans
,
M.
Karpoukhin
,
C.
Hwang
,
T.
Uchida
,
M.
Gotoh
,
O.
Nwasokwa
,
P.
Sager
, and
J. N.
Weiss
, “
Quasiperiodicity and chaos in cardiac fibrillation
,”
J. Clin. Invest.
99
,
305
314
(
1997
).
14.
B. P.
Hoekstra
,
C. G.
Diks
,
M. A.
Allessie
, and
J.
DeGoede
, “
Nonlinear analysis of epicardial atrial electrograms of electrically induced atrial fibrillation in man
,”
J. Cardiovasc. Electrophysiol.
6
,
419
440
(
1995
).
15.
T.
Kao
,
Y. Y.
Su
,
H. W.
Tso
,
Y. C.
Lin
,
S. A.
Chen
, and
C. T.
Tai
, “
Nonlinear analysis of human atrial flutter and fibrillation using surface electrocardiogram
,”
Comput. Cardiol.
2004
,
441
444
.
16.
S.
Iravanian
and
J. J.
Langberg
, “
Critical phase transitions during ablation of atrial fibrillation
,”
Chaos
27
,
093925
(
2017
).
17.
O. A.
Rosso
,
H. A.
Larrondo
,
M. T.
Martin
,
A.
Plastino
, and
M. A.
Fuentes
, “
Distinguishing noise from chaos
,”
Phys Rev Lett.
99
,
154102
(
2007
).
18.
P.
Grassberger
and
I.
Procaccia
, “
Measuring the strangeness of strange attractors
,”
Physica D
9
,
189
208
(
1983
).
19.
P.
Grassberger
and
I.
Procaccia
, “
Estimation of the Kolmogorov-entropy from a chaotic signal
,”
Phys. Rev. A
28
,
2591
2593
(
1983
).
20.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time-series
,”
Physica D
16
,
285
317
(
1985
).
21.
M.
Casdagli
, “
Nonlinear prediction of chaotic time-series
,”
Physica D
35
,
335
356
(
1989
).
22.
D. T.
Kaplan
and
L.
Glass
, “
Direct test for determinism in a time series
,”
Phys. Rev Lett.
68
,
427
430
(
1992
).
23.
C. S.
Poon
and
M.
Barahona
, “
Titration of chaos with added noise
,”
Proc. Natl. Acad. Sci. U. S. A.
98
,
7107
7112
(
2001
).
24.
G. A.
Gottwald
and
I.
Melbourne
, “
A new test for chaos in deterministic systems
,”
Proc. R. Soc. A-Math. Phys.
460
,
603
611
(
2004
).
25.
A. R.
Osborne
and
A.
Provenzale
, “
Finite correlation dimension for stochastic-systems with power-law spectra
,”
Physica D
35
,
357
381
(
1989
).
26.
A.
Provenzale
,
A. R.
Osborne
, and
R.
Soj
, “
Convergence of the K2 entropy for random noises with power law spectra
,”
Physica D
47
,
361
372
(
1991
).
27.
J. P.
Eckmann
and
D.
Ruelle
, “
Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems
,”
Phys. D: Nonlinear Phenom.
56
,
185
187
(
1992
).
28.
M.
Dammig
and
F.
Mitschke
, “
Estimation of Lyapunov exponents from time-series - The stochastic case
,”
Phys. Lett. A
178
,
385
394
(
1993
).
29.
J.
Hu
,
W. W.
Tung
,
J.
Gao
, and
Y.
Cao
, “
Reliability of the 0-1 test for chaos
,”
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
72
,
056207
(
2005
).
30.
U. S.
Freitas
,
C.
Letellier
, and
L. A.
Aguirre
, “
Failure in distinguishing colored noise from chaos using the “noise titration” technique
,”
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
79
,
035201
(
2009
).
31.
J.
Gao
,
J.
Hu
,
X.
Mao
, and
W.-W.
Tung
, “
Detecting low-dimensional chaos by the “noise titration” technique: Possible problems and remedies
,”
Chaos, Solitons Fractals
45
,
213
223
(
2012
).
32.
C. P.
Unsworth
,
M. R.
Cowper
,
S.
McLaughlin
, and
B.
Mulgrew
, “
False detection of chaotic behaviour in the stochastic compound k-distribution model of radar sea clutter
,” in
Proceedings of the Tenth IEEE Workshop on Statistical Signal and Array Processing (Catalog No. 00TH8496)
(
2000
), pp.
296
300
.
33.
C.
Bandt
and
B.
Pompe
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
,
174102
(
2002
).
34.
J. M.
Amigo
,
L.
Kocarev
, and
J.
Szczepanski
, “
Order patterns and chaos
,”
Phys. Lett. A
355
,
27
31
(
2006
).
35.
J. M.
Amigo
,
S.
Zambrano
, and
M. A. F.
Sanjuan
, “
Combinatorial detection of determinism in noisy time series
,”
EPL-Europhys. Lett.
83
,
60005
(
2008
).
36.
J. M.
Amigo
and
M. B.
Kennel
, “
Forbidden ordinal patterns in higher dimensional dynamics
,”
Phys. D-Nonlinear Phenom.
237
,
2893
2899
(
2008
).
37.
J. M.
Amigo
,
S.
Zambrano
, and
M. A. F.
Sanjuan
, “
True and false forbidden patterns in deterministic and random dynamics
,”
EPL-Europhys. Lett.
79
,
50001
(
2007
).
38.
O. A.
Rosso
,
L. C.
Carpi
,
P. M.
Saco
,
M.
Gómez Ravetti
,
A.
Plastino
, and
H. A.
Larrondo
, “
Causality and the entropy–complexity plane: Robustness and missing ordinal patterns
,”
Phys. A: Stat. Mech. Appl.
391
,
42
55
(
2012
).
39.
S. M.
Narayan
,
D. E.
Krummen
,
K.
Shivkumar
,
P.
Clopton
,
W. J.
Rappel
, and
J. M.
Miller
, “
Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation) trial
,”
J. Am. Coll. Cardiol.
60
,
628
636
(
2012
).
40.
S.
Tao
,
S. F.
Way
,
J.
Garland
,
J.
Chrispin
,
L. A.
Ciuffo
,
M. A.
Balouch
,
S.
Nazarian
,
D. D.
Spragg
,
J. E.
Marine
,
R. D.
Berger
,
H.
Calkins
, and
H.
Ashikaga
, “
Ablation as targeted perturbation to rewire communication network of persistent atrial fibrillation
,”
PLoS One
12
,
e0179459
(
2017
).
41.
C. W.
Kulp
,
L.
Zunino
,
T.
Osborne
, and
B.
Zawadzki
, “
Using missing ordinal patterns to detect nonlinearity in time series data
,”
Phys. Rev. E
96
,
022218
(
2017
).
42.
J.
Theiler
,
S.
Eubank
,
A.
Longtin
,
B.
Galdrikian
, and
J. D.
Farmer
, “
Testing for nonlinearity in time-series - the method of surrogate data
,”
Physica D
58
,
77
94
(
1992
).
43.
T.
Schreiber
and
A.
Schmitz
, “
Improved surrogate data for nonlinearity tests
,”
Phys. Rev. Lett.
77
,
635
638
(
1996
).
44.
L. C.
Carpi
,
P. M.
Saco
, and
O. A.
Rosso
, “
Missing ordinal patterns in correlated noises
,”
Physica A
389
,
2020
2029
(
2010
).
45.
C. W.
Kulp
,
J. M.
Chobot
,
B. J.
Niskala
, and
C. J.
Needhammer
, “
Using forbidden ordinal patterns to detect determinism in irregularly sampled time series
,”
Chaos
26
,
023107
(
2016
).
46.
M.
Zanin
, “
Forbidden patterns in financial time series
,”
Chaos
18
,
013119
(
2008
).
47.
L.
Zunino
,
M.
Zanin
,
B. M.
Tabak
,
D. G.
Perez
, and
O. A.
Rosso
, “
Forbidden patterns, permutation entropy and stock market inefficiency
,”
Physica A
388
,
2854
2864
(
2009
).
48.
G.
Ouyang
,
X.
Li
,
C.
Dang
, and
D. A.
Richards
, “
Deterministic dynamics of neural activity during absence seizures in rats
,”
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
79
,
041146
(
2009
).
49.
C.
Rummel
,
E.
Abela
,
M.
Hauf
,
R.
Wiest
, and
K.
Schindler
, “
Ordinal patterns in epileptic brains: Analysis of intracranial EEG and simultaneous EEG-fMRI
,”
Eur. Phys. J.-Spec. Top.
222
,
569
585
(
2013
).
50.
K.
Schindler
,
H.
Gast
,
L.
Stieglitz
,
A.
Stibal
,
M.
Hauf
,
R.
Wiest
,
L.
Mariani
, and
C.
Rummel
, “
Forbidden ordinal patterns of periictal intracranial EEG indicate deterministic dynamics in human epileptic seizures
,”
Epilepsia
52
,
1771
1780
(
2011
).
51.
C. E.
Shannon
and
W.
Weaver
,
The Mathematical Theory of Communication
(
The University of Illinois Press
,
Urbana, IL
,
1949
).
52.
D. P.
Feldman
and
J. P.
Crutchfield
, “
Measures of statistical complexity: Why?
,”
Phys. Lett. A
238
,
244
252
(
1998
).
53.
D. P.
Feldman
,
C. S.
McTague
, and
J. P.
Crutchfield
, “
The organization of intrinsic computation: Complexity-entropy diagrams and the diversity of natural information processing
,”
Chaos
18
,
043106
(
2008
).
54.
P. W.
Lamberti
,
M. T.
Martin
,
A.
Plastino
, and
O. A.
Rosso
, “
Intensive entropic non-triviality measure
,”
Physica A
334
,
119
131
(
2004
).
55.
W. C.
Chow
, “
Fractal (fractional) Brownian motion
,”
Wiley Interdiscip. Rev.: Comput. Stat.
3
,
149
162
(
2011
).
56.
T.
Onchi
,
A.
Fujisawa
,
A.
Sanpei
,
H.
Himura
,
S.
Masamune
, and
R.
Team
, “
Permutation entropy and statistical complexity in characterising low-aspect-ratio reversed-field pinch plasma
,”
Phys. Scr.
92
,
055601
(
2017
).
57.
P. J.
Weck
,
D. A.
Schaffner
,
M. R.
Brown
, and
R. T.
Wicks
, “
Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind
,”
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
91
,
023101
(
2015
).
58.
T.
Sauer
, “
Interspike interval embedding of chaotic signals
,”
Chaos
5
,
127
132
(
1995
).
59.
M. T.
Martin
,
A.
Plastino
, and
O. A.
Rosso
, “
Generalized statistical complexity measures: Geometrical and analytical properties
,”
Physica A
369
,
439
462
(
2006
).
60.
G.
Graff
,
B.
Graff
,
A.
Kaczkowska
,
D.
Makowiec
,
J. M.
Amigo
,
J.
Piskorski
,
K.
Narkiewicz
, and
P.
Guzik
, “
Ordinal pattern statistics for the assessment of heart rate variability
,”
Eur. Phys. J.-Spec. Top.
222
,
525
534
(
2013
).
61.
R.
Hegger
and
H.
Kantz
, “
Improved false nearest neighbor method to detect determinism in time series data
,”
Phys. Rev. E
60
,
4970
4973
(
1999
).
62.
H. F.
Pitschner
,
A.
Berkovic
,
S.
Grumbrecht
, and
J.
Neuzner
, “
Multielectrode basket catheter mapping for human atrial fibrillation
,”
J. Cardiovasc. Electrophysiol.
9
,
S48
S56
(
1998
), PMID: 9727676.
63.
F.
Censi
,
V.
Barbaro
,
P.
Bartolini
,
G.
Calcagnini
,
A.
Michelucci
, and
S.
Cerutti
, “
Non-linear coupling of atrial activation processes during atrial fibrillation in humans
,”
Biol. Cybern.
85
,
195
201
(
2001
).

Supplementary Material

You do not currently have access to this content.