The Fourier phase information play a key role for the quantified description of nonlinear data. We present a novel tool for time series analysis that identifies nonlinearities by sensitively detecting correlations among the Fourier phases. The method, being called phase walk analysis, is based on well established measures from random walk analysis, which are now applied to the unwrapped Fourier phases of time series. We provide an analytical description of its functionality and demonstrate its capabilities on systematically controlled leptokurtic noise. Hereby, we investigate the properties of leptokurtic time series and their influence on the Fourier phases of time series. The phase walk analysis is applied to measured and simulated intermittent time series, whose probability density distribution is approximated by power laws. We use the day-to-day returns of the Dow-Jones industrial average, a synthetic time series with tailored nonlinearities mimicing the power law behavior of the Dow-Jones and the acceleration of the wind at an Atlantic offshore site. Testing for nonlinearities by means of surrogates shows that the new method yields strong significances for nonlinear behavior. Due to the drastically decreased computing time as compared to embedding space methods, the number of surrogate realizations can be increased by orders of magnitude. Thereby, the probability distribution of the test statistics can very accurately be derived and parameterized, which allows for much more precise tests on nonlinearities.

1.
A. M.
Lyapunov
, “
The general problem of the stability of motion
,”
Int. J. Control
55
,
531
534
(
1992
).
2.
B.
Bylov
,
R.
Vinograd
,
D.
Grobman
, and
V.
Nemytskii
,
The Theory of Lyapunov Exponents
(Nauka, 1966), 576 pp.
3.
H.
Kantz
, “
A robust method to estimate the maximal lyapunov exponent of a time series
,”
Phys. Lett. A
185
,
77
87
(
1994
).
4.
J. D.
Farmer
and
J.
Sidorowich
, “
Predicting chaotic time series
,”
Phys. Rev. Lett.
59
,
845
848
(
1987
).
5.
G.
Sugihara
and
R. M.
May
, “
Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series
,”
Nature
344
,
734
741
(
1990
).
6.
P.
Grassberger
, “
Generalized dimensions of strange attractors
,”
Phys. Lett. A
97
,
227
230
(
1983
).
7.
N. H.
Packard
,
J. P.
Crutchfield
,
J. D.
Farmer
, and
R. S.
Shaw
, “
Geometry from a time series
,”
Phys. Rev. Lett.
45
,
712
(
1980
).
8.
F.
Takens
,
Detecting Strange Attractors in Turbulence
(
Springer
,
1981
).
9.
P.
Coles
,
P.
Dineen
,
J.
Earl
, and
D.
Wright
, “
Phase correlations in cosmic microwave background temperature maps
,”
Mon. Not. R. Astron. Soc.
350
,
989
1004
(
2004
).
10.
A.
Stannard
and
P.
Coles
, “
Random-walk statistics and the spherical harmonic representation of cosmic microwave background maps
,”
Mon. Not. R. Astron. Soc.
364
,
929
933
(
2005
).
11.
L.-Y.
Chiang
,
P. D.
Naselsky
,
O. V.
Verkhodanov
, and
M. J.
Way
, “
Non-Gaussianity of the derived maps from the first-year Wilkinson microwave anisotropy probe data
,”
Astrophys. J., Lett.
590
,
L65
L68
(
2003
).
12.
L.-Y.
Chiang
,
P. D.
Naselsky
, and
P.
Coles
, “
Departure from Gaussianity of the cosmic microwave background temperature anisotropies in the three-year WMAP data
,”
Astrophys. J.
664
,
8
13
(
2007
).
13.
R.
Sung
,
J.
Short
, and
P.
Coles
, “
Statistical characterization of cosmic microwave background temperature patterns in anisotropic cosmologies
,”
Mon. Not. R. Astron. Soc.
412
,
492
502
(
2011
).
14.
H. I.
Modest
,
C.
Räth
,
A. J.
Banday
,
K. M.
Górski
, and
G. E.
Morfill
, “
Correlating Fourier phase information with real-space higher order statistics in CMB data
,”
Phys. Rev. D
89
,
123004
(
2014
).
15.
L.-Y.
Chiang
and
P.
Coles
, “
Phase information and the evolution of cosmological density perturbations
,”
Mon. Not. R. Astron. Soc.
311
,
809
824
(
2000
).
16.
P.
Coles
and
L.-Y.
Chiang
, “
Characterizing the nonlinear growth of large-scale structure in the Universe
,”
Nature
406
,
376
378
(
2000
).
17.
L.-Y.
Chiang
,
P.
Coles
, and
P.
Naselsky
, “
Return mapping of phases and the analysis of the gravitational clustering hierarchy
,”
Mon. Not. R. Astron. Soc.
337
,
488
494
(
2002
).
18.
C.
Räth
,
W.
Bunk
,
M. B.
Huber
,
G. E.
Morfill
,
J.
Retzlaff
, and
P.
Schuecker
, “
Analysing large-scale structure - I. Weighted scaling indices and constrained randomization
,”
Mon. Not. R. Astron. Soc.
337
,
413
421
(
2002
).
19.
C.
Räth
,
M.
Gliozzi
,
I.
Papadakis
, and
W.
Brinkmann
, “
Revisiting algorithms for generating surrogate time series
,”
Phys. Rev. Lett.
109
,
144101
(
2012
).
20.
C.
Räth
and
I.
Laut
, “
Time series with tailored nonlinearities
,”
Phys. Rev. E
92
,
040902
(
2015
).
21.
J.-P.
Eckmann
and
D.
Ruelle
, “
Ergodic theory of chaos and strange attractors
,”
Rev. Mod. Phys.
57
,
617
(
1985
).
22.
J. C.
Sprott
,
Chaos and Time-Series Analysis
(
Oxford University Press
,
2003
).
23.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
2004
), Vol. 7.
24.
E.
Bradley
and
H.
Kantz
, “
Nonlinear time-series analysis revisited
,”
Chaos
25
,
097610
(
2015
).
25.
P.
Whitle
,
Hypothesis Testing in Time Series Analysis
(
Almqvist & Wiksells
,
1951
), Vol.
4
.
26.
Holden-Day Series in Time Series Analysis
, edited by
G. E. P.
Box
and
G. M.
Jenkins
(
Holden-Day
,
San Francisco
,
1976
).
27.
G. U.
Yule
, “
On a method of investigating periodicities in disturbed series, with special reference to wolfer's sunspot numbers
,”
Philos. Trans. R. Soc., A
226
,
267
298
(
1927
).
28.
G.
Walker
, “
On periodicity in series of related terms
,”
Proc. R. Soc. London, Ser. A
131
,
518
532
(
1931
).
29.
N.
Wiener
, “
Generalized harmonic analysis
,”
Acta Math.
55
,
117
258
(
1930
).
30.
J.
Theiler
,
S.
Eubank
,
A.
Longtin
,
B.
Galdrikian
, and
J.
Doyne Farmer
, “
Testing for nonlinearity in time series: The method of surrogate data
,”
Phys. D
58
,
77
94
(
1992
).
31.
K.
Itoh
, “
Analysis of the phase unwrapping algorithm
,”
Appl. Opt.
21
,
2470
(
1982
).
32.
B.
Mandelbrot
, “
The variation of certain speculative prices
,”
J. Bus.
36
,
394
419
(
1963
).
33.
C. W.
van Atta
and
J.
Park
, “
Statistical self-similarity and inertial subrange turbulence
,” in
Statistical Models and Turbulence, Lecture Notes in Physics
, edited by
M.
Rosenblatt
and
C.
van Atta
(
Springer Verlag
,
Berlin
,
1972
), Vol.
12
, pp.
402
426
.
34.
U.
Frisch
,
Turbulence: The Legacy of A. N. Kolmogorov
(
Cambridge University Press
,
Cambridge (UK)
,
1995
).
35.
R. N.
Mantegna
and
H. E.
Stanley
, “
Scaling behaviour in the dynamics of an economic index
,”
Nature
376
,
46
49
(
1995
).
36.
S.
Ghashghaie
,
W.
Breymann
,
J.
Peinke
,
P.
Talkner
, and
Y.
Dodge
, “
Turbulent cascades in foreign exchange markets
,”
Nature
381
,
767
770
(
1996
).
37.
M.
Jenkinson
, “
Fast, automated, N-dimensional phase-unwrapping algorithm
,”
Magn. Reson. Med.
49
,
193
197
(
2003
).
38.
D. C.
Ghiglia
and
M. D.
Pritt
,
Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software
(
Wiley
,
New York
,
1998
).
39.
H.
Nyquist
, “
Certain topics in telegraph transmission theory
,”
Trans. Am. Inst. Electr. Eng.
47
,
617
624
(
1928
).
40.
R.
Cont
, “
Volatility clustering in financial markets: Empirical facts and agent-based models
,” in
Long Memory in Economics
(
Springer
,
2007
), pp.
289
309
.
41.
G.
Pólya
, “
Über den zentralen grenzwertsatz der wahrscheinlichkeitsrechnung und das momentenproblem
,”
Math. Z.
8
,
171
181
(
1920
).
42.
N.
Wiener
, “
Differential-space
,”
J. Math. Phys.
2
,
131
174
(
1923
).
43.
W.
Feller
, “
The fundamental limit theorems in probability
,” in
Selected Papers I
, edited by
R.
Schilling
,
Z.
Vondraček
, and
W.
Woyczyński
(
Springer
,
Cham
,
2015
), pp.
667
699
.
44.
J.
Cochrane
, “
How big is the random walk in GNP?
,”
J. Political Econ.
96
,
893
920
(
1988
).
45.
S.
Williamson
, “
Daily closing values of the DJA in the United States, 1885 to present
” (
2017
), see http://www.measuringworth.com/DJA/.
46.
N. R. E.
Laboratory
, “
90-m offshore data (height above surface)
” (2012), see https://www.nrel.gov/gis/data-wind.html.
47.
K. T.
Dolan
and
M. L.
Spano
, “
Surrogate for nonlinear time series analysis
,”
Phys. Rev. E
64
,
046128
(
2001
).
48.
T.
Schreiber
and
A.
Schmitz
, “
Improved surrogate data for nonlinearity tests
,”
Phys. Rev. Lett.
77
,
635
638
(
1996
).
49.
B.
Iglewicz
and
D. C.
Hoaglin
 et al,
How to Detect and Handle Outliers
(
ASQC Quality Press Milwaukee
,
WI
,
1993
), Vol.
16
.
50.
P.
Grassberger
and
I.
Procaccia
, “
Characterization of strange attractors
,”
Phys. Rev. Lett.
50
,
346
349
(
1983
).
51.
T.
Schreiber
and
A.
Schmitz
, “
Discrimination power of measures for nonlinearity in a time series
,”
Phys. Rev. E
55
,
5443
5447
(
1997
).
52.
M.
Small
and
C. K.
Tse
, “
Determinism in financial time series
,”
Stud. Nonlinear Dyn. Econ.
7
,
1558
3708
(
2003
).
53.
M.
Ragwitz
and
H.
Kantz
, “
Detecting non-linear structure and predicting turbulent gusts in surface wind velocities
,”
EPL
51
,
595
(
2000
).
54.
I.
Laut
and
C.
Räth
, “
Surrogate-assisted network analysis of nonlinear time series
,”
Chaos
26
,
103108
(
2016
).
55.
A.
Golestani
and
R.
Gras
, “
Can we predict the unpredictable?
,”
Sci. Rep.
4
,
6834
(
2014
).
56.
S.
Birkholz
,
C.
Brée
,
A.
Demircan
, and
G.
Steinmeyer
, “
Predictability of rogue events
,”
Phys. Rev. Lett.
114
,
213901
(
2015
).
57.
P. C.
Ivanov
,
L. A. N.
Amaral
,
A. L.
Goldberger
,
S.
Havlin
,
M. G.
Rosenblum
,
Z. R.
Struzik
, and
H. E.
Stanley
, “
Multifractality in human heartbeat dynamics
,”
Nature
399
,
461
465
(
1999
).
You do not currently have access to this content.