In large-scale high-density integrated circuits, memristors in close proximity to one another both influence, and are influenced by, the behavior of nearby memristors. However, the previous analyses of memristors-based circuit applications have seldom considered the possibility of coupling effects between memristors which invariably influences the response of all memristors, thus rendering much previous research as incomplete. In this paper, the circuit dynamics of memristive Chua's circuits are systematically analyzed based on a pair of compositely connected flux-controlled memristors characterized by cubic nonlinearity as a typical example. A theoretical analysis is undertaken and verified via MATLAB. While tuning the coupling strength, variations in circuit dynamics are characterized by phase portraits, bifurcation diagrams, and Lyapunov exponents. A new floating memristor emulator with coupling ports, described by cubic nonlinearity, is designed using off-the-shelf circuit devices and is shown to be successfully used in building chaotic circuits in hardware experiments, verifying theoretical results in simulations. This paper provides a new way through which memristors-based circuit dynamics can be influenced by tuning the coupling strength between memristors without changing other circuit parameters. It is further highlighted that when designing future memristors-based circuits, the coupling action between memristors should be considered if necessary and compensated when causing undesired circuit responses.

1.
L.
Chua
, “
Memristor: The missing circuit element
,”
IEEE Trans. Circuit Theory
18
(
5
),
507
519
(
1971
).
2.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
, “
The missing memristor found
,”
Nature
453
(
7191
),
80
83
(
2008
).
3.
S.
Park
,
M.
Chu
,
J.
Kim
,
J.
Noh
,
M.
Jeon
,
B.
Hun Lee
,
H.
Hwang
,
B.
Lee
, and
B-g
Lee
, “
Electronic system with memristive synapses for pattern recognition
,”
Sci. Rep.
5
,
10123
(
2015
).
4.
I.
Gupta
,
A.
Serb
,
A.
Khiat
,
R.
Zeitler
,
S.
Vassanelli
, and
T.
Prodromakis
, “
Real-time encoding and compression of neuronal spikes by metal-oxide memristors
,”
Nat. Commun.
7
,
12805
(
2016
).
5.
C.
Wang
,
M.
Lv
,
A.
Alsaedi
, and
J.
Ma
, “
Synchronization stability and pattern selection in a memristive neuronal network
,”
Chaos
27
(
11
),
113108
(
2017
).
6.
C.
Yakopcic
,
T. M.
Taha
, and
M.
McLean
, “
Method for ex-situ training in memristor-based neuromorphic circuit using robust weight programming method
,”
Electron. Lett.
51
(
12
),
899
900
(
2015
).
7.
Y.
Chang
,
F.
Zhou
,
B. W.
Fowler
,
Y.
Chen
,
C.-C.
Hsieh
,
L.
Guckert
,
E. E.
Swartzlander
, and
J. C.
Lee
, “
Memcomputing (memristor plus computing) in intrinsic SiOx-based resistive switching memory: Arithmetic operations for logic applications
,”
IEEE Trans. Electron Devices
64
(
7
),
2977
2983
(
2017
).
8.
K. M.
Kim
,
J.
Zhang
,
C.
Graves
,
J. J.
Yang
,
B. J.
Choi
,
C. S.
Hwang
,
Z.
Li
, and
R. S.
Williams
, “
Low-power, self-rectifying, and forming-free memristor with an asymmetric programing voltage for a high-density crossbar application
,”
Nano Lett.
16
(
11
),
6724
6732
(
2016
).
9.
F. L.
Traversa
and
M.
Di Ventra
, “
Polynomial-time solution of prime factorization and NP-complete problems with digital memcomputing machines
,”
Chaos
27
(
2
),
023107
(
2017
).
10.
D.
Chabi
,
Z.
Wang
,
C.
Bennett
,
J.-O.
Klein
, and
W.
Zhao
, “
Ultrahigh density memristor neural crossbar for on-chip supervised learning
,”
IEEE Trans. Nanotechnol.
14
(
6
),
954
962
(
2015
).
11.
B.
Chakrabarti
,
M. A.
Lastras-Montano
,
G.
Adam
,
M.
Prezioso
,
B.
Hoskins
,
K.-T.
Cheng
, and
D. B.
Strukov
, “
A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit
,”
Sci. Rep.
7
,
42429
(
2017
).
12.
S.
Benderli
and
T. A.
Wey
, “
On spice macromodelling of TiO2 memristors
,”
Electron. Lett.
45
(
7
),
377
379
(
2009
).
13.
Á.
Rák
and
G.
Cserey
, “
Macromodeling of the memristor in spice
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
29
(
4
),
632
636
(
2010
).
14.
S.
Shin
,
K.
Kim
, and
S.-M.
Kang
, “
Compact models for memristors based on charge-flux constitutive relationships
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
29
(
4
),
590
598
(
2010
).
15.
H.
Kim
,
M. P.
Sah
,
C.
Yang
,
S.
Cho
, and
L. O.
Chua
, “
Memristor emulator for memristor circuit applications
,”
IEEE Trans. Circuits Syst. I: Reg. Pap.
59
(
10
),
2422
2431
(
2012
).
16.
R. K.
Budhathoki
,
M. P. D.
Sah
,
C.
Yang
,
H.
Kim
, and
L.
Chua
, “
Transient behaviors of multiple memristor circuits based on flux charge relationship
,”
Int. J. Bifurcation Chaos
24
(
02
),
1430006
(
2014
).
17.
R. K.
Budhathoki
,
M. P.
Sah
,
S. P.
Adhikari
,
H.
Kim
, and
L.
Chua
, “
Composite behavior of multiple memristor circuits
,”
IEEE Trans. Circuits Syst. I: Reg. Pap.
60
(
10
),
2688
2700
(
2013
).
18.
L. V.
Gambuzza
,
A.
Buscarino
,
L.
Fortuna
, and
M.
Frasca
, “
Memristor-based adaptive coupling for consensus and synchronization
,”
IEEE Trans. Circuits Syst. I: Reg. Pap.
62
(
4
),
1175
1184
(
2015
).
19.
Y.
Zhou
,
Y.
Li
,
L.
Xu
,
S.
Zhong
,
H.
Sun
, and
X.
Miao
, “
16 Boolean logics in three steps with two anti-serially connected memristors
,”
Appl. Phys. Lett.
106
(
23
),
233502
(
2015
).
20.
J.
Rajendran
,
R.
Karri
, and
G. S.
Rose
, “
Improving tolerance to variations in memristor-based applications using parallel memristors
,”
IEEE Trans. Comput.
64
(
3
),
733
746
(
2015
).
21.
P.
Meuffels
and
R.
Soni
, “
Fundamental issues and problems in the realization of memristors
,” preprint arXiv:1207.7319 (
2012
).
22.
W.
Cai
and
R.
Tetzlaff
, “
Beyond series and parallel: Coupling as a third relation in memristive systems
,” in
IEEE International Symposium on Circuits and Systems (ISCAS)
(
IEEE
,
2014
), pp.
1259
1262
.
23.
W.
Yan
,
Y.
Jiu
,
W.
Li-Dan
, and
D.
Shu-Kai
, “
Research of coupling behavior based on series-parallel flux-controlled memristor
,”
Acta Phys. Sin.
64
(
23
),
0237303
(
2015
).
24.
D.
Yu
,
H. H.
Ching Iu
,
Y.
Liang
,
T.
Fernando
, and
L. O.
Chua
, “
Dynamic behavior of coupled memristor circuits
,”
IEEE Trans. Circuits Syst. I: Reg. Pap.
62
(
6
),
1607
1616
(
2015
).
25.
S.
Li
,
D.
Yu
,
H.
Chen
,
H.
Cheng
, and
X.
Zan
, “
Spontaneous synchronization of two Chua's circuits based on coupled memristors
,” in 14th International Conference on Control, Automation, Robotics and Vision (ICARCV) (
IEEE
,
2016
), pp.
1
4
.
26.
J. K.
Eshraghian
,
H. H.
Ching Iu
,
T.
Fernando
,
D.
Yu
, and
Z.
Li
, “
Modelling and characterization of dynamic behavior of coupled memristor circuits
,” in
IEEE International Symposium on Circuits and Systems (ISCAS)
(
IEEE
,
2016
), pp.
690
693
.
27.
D.
Yu
,
C.
Zheng
,
H. H.
Ching Iu
,
T.
Fernando
, and
L. O.
Chua
, “
A new circuit for emulating memristors using inductive coupling
,”
IEEE Access
5
,
1284
1295
(
2017
).
28.
V.
Mladenov
and
S.
Kirilov
, “
Analysis of the mutual inductive and capacitive connections and tolerances of memristors parameters of a memristor memory matrix
,” in
European Conference on Circuit Theory and Design (ECCTD)
(
IEEE
,
2013
), pp.
1
4
.
29.
A. C.
Torrezan
,
J. P.
Strachan
,
G.
Medeiros-Ribeiro
, and
R.
Stanley Williams
, “
Sub-nanosecond switching of a tantalum oxide memristor
,”
Nanotechnology
22
(
48
),
485203
(
2011
).
30.
M. P.
Sah
,
C.
Yang
,
H.
Kim
,
B.
Muthuswamy
,
J.
Jevtic
, and
L.
Chua
, “
A generic model of memristors with parasitic components
,”
IEEE Trans. Circuits Syst. I: Reg. Pap.
62
(
3
),
891
898
(
2015
).
31.
B.
Muthuswamy
,
J.
Jevtic
,
H. H.
Ching Iu
,
C. K.
Subramaniam
,
K.
Ganesan
,
V.
Sankaranarayanan
,
K.
Sethupathi
,
H.
Kim
,
M. P.
Shah
, and
L. O.
Chua
, “
Memristor modelling
,” in
IEEE International Symposium on Circuits and Systems (ISCAS)
(
IEEE
,
2014
), pp.
490
493
.
32.
B.
Bao
,
H.
Bao
,
N.
Wang
,
M.
Chen
, and
Q.
Xu
, “
Hidden extreme multistability in memristive hyperchaotic system
,”
Chaos, Solitons Fractals
94
,
102
111
(
2017
).
33.
A. L.
Fitch
,
D.
Yu
,
H. H.
Ching Iu
, and
V.
Sreeram
, “
Hyperchaos in a memristor-based modified canonical Chua's circuit
,”
Int. J. Bifurcation Chaos
22
(
06
),
1250133
(
2012
).
34.
W.
Hu
,
D.
Ding
, and
N.
Wang
, “
Nonlinear dynamic analysis of a simplest fractional-order delayed memristive chaotic system
,”
J. Comput. Nonlinear Dyn.
12
(
4
),
041003
(
2017
).
35.
J.
Kengne
,
A.
Nguomkam Negou
, and
D.
Tchiotsop
, “
Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit
,”
Nonlinear Dyn.
88
(
4
),
2589
2608
(
2017
).
36.
A.
Buscarino
,
L.
Fortuna
,
M.
Frasca
, and
L. V.
Gambuzza
, “
A gallery of chaotic oscillators based on HP memristor
,”
Int. J. Bifurcation Chaos
23
(
05
),
1330015
(
2013
).
37.
F. Y.
Yang
,
J. L.
Leng
, and
Q. D.
Li
, “
The 4-dimensional hyperchaotic memristive circuit based on Chuas circuit
,”
Acta Phys. Sin.
63
(
8
),
080502
(
2014
).
38.
B.
Zhang
and
F.
Deng
, “
Double-compound synchronization of six memristor-based Lorenz systems
,”
Nonlinear Dyn.
77
(
4
),
1519
1530
(
2014
).
39.
W.
Wang
,
Y.
Zeng
, and
R.
Sun
, “
Research on a six-order chaotic circuit with three memristors
,”
Acta Phys. Sin.
66
(
4
),
040502
(
2017
).
40.
J.
Zhang
and
X.
Liao
, “
Synchronization and chaos in coupled memristor-based Fitzhugh-Nagumo circuits with memristor synapse
,”
AEU-Int. J. Electron. Commun.
75
,
82
90
(
2017
).
41.
C. K.
Volos
,
I. M.
Kyprianidis
,
I. N.
Stouboulos
,
E.
Tlelo-Cuautle
, and
S.
Vaidyanathan
, “
Memristor: A new concept in synchronization of coupled neuromorphic circuits
,”
J. Eng. Sci. Technol. Rev.
8
(
2
),
157
173
(
2015
); available at https://scholar.google.com.au/scholar?cluster=14910643030463292795&hl=zh-CN&as_sdt=2005&sciodt=0,5.
42.
S.
Yang
,
C.
Li
, and
T.
Huang
, “
Synchronization of coupled memristive chaotic circuits via state-dependent impulsive control
,”
Nonlinear Dyn.
88
(
1
),
115
129
(
2017
).
43.
L.
Ni
,
H.
Huang
, and
H.
Yu
, “
A memristor network with coupled oscillator and crossbar towards L2-norm based machine learning
,” in
IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)
(
IEEE
,
2016
), pp.
179
184
.
44.
M.
Itoh
and
L. O.
Chua
, “
Memristor oscillators
,”
Int. J. Bifurcation Chaos
18
(
11
),
3183
3206
(
2008
).
45.
B.
Muthuswamy
and
P. P.
Kokate
, “
Memristor-based chaotic circuits
,”
IETE Tech. Rev.
26
(
6
),
417
429
(
2009
).
46.
C.
Wang
,
X.
Liu
, and
H.
Xia
, “
Multi-piecewise quadratic nonlinearity memristor and its 2n-scroll and 2n+ 1-scroll chaotic attractors system
,”
Chaos
27
(
3
),
033114
(
2017
).
47.
H. H.
Ching Iu
,
D.
Yu
,
A. L.
Fitch
,
V.
Sreeram
, and
H.
Chen
, “
Controlling chaos in a memristor based circuit using a twin-T notch filter
,”
IEEE Trans. Circuits Syst. I: Reg. Pap.
58
(
6
),
1337
1344
(
2011
).
48.
I. A.
Korneev
and
V. V.
Semenov
, “
Andronov–Hopf bifurcation with and without parameter in a cubic memristor oscillator with a line of equilibria
,”
Chaos
27
(
8
),
081104
(
2017
).
49.
B.
Muthuswamy
, “
Implementing memristor based chaotic circuits
,”
Int. J. Bifurcation Chaos
20
(
05
),
1335
1350
(
2010
).
50.
G.
Si
,
L.
Diao
, and
J.
Zhu
, “
Fractional-order charge-controlled memristor: Theoretical analysis and simulation
,”
Nonlinear Dyn.
87
(
4
),
2625
2634
(
2017
).
51.
L.
Teng
,
H. H.
Ching Iu
,
X.
Wang
, and
X.
Wang
, “
Novel chaotic behavior in the Muthuswamy–Chua system using Chebyshev polynomials
,”
Int. J. Numer. Modell.: Electron. Netw. Devices Fields
28
(
3
),
275
286
(
2015
).
52.
S.
Cang
,
A.
Wu
,
Z.
Wang
,
Z.
Wang
, and
Z.
Chen
, “
A general method for exploring three-dimensional chaotic attractors with complicated topological structure based on the two-dimensional local vector field around equilibriums
,”
Nonlinear Dyn.
83
(
1-2
),
1069
1078
(
2016
).
53.
B.
Bao
,
N.
Wang
,
Q.
Xu
,
H.
Wu
, and
Y.
Hu
, “
A simple third-order memristive band pass filter chaotic circuit
,”
IEEE Trans. Circuits Syst. II: Express Briefs
64
(
8
),
977
981
(
2016
).
54.
S. P.
Adhikari
,
M. P.
Sah
,
H.
Kim
, and
L. O.
Chua
, “
Three fingerprints of memristor
,”
IEEE Trans. Circuits Syst. I: Reg. Pap.
60
(
11
),
3008
3021
(
2013
).
You do not currently have access to this content.