This paper, based on the concept of symbolic correlation integral, introduces a set of symbolic recurrence plots and associated invariant measures, which are independent of the distance parameter, serving as a tool for quantifying the dynamic structure. These new measures allow the study of transient behavior, coexistence of attractors, bifurcations, and structural change. The final user does not have to choose the free distance parameter. An empirical application to electrocardiography data illustrates the use of symbolic recurrence measures.

1.
Amigó
,
J.
,
Permutation Complexity in Dynamical Systems: Ordinal Patterns, Permutation Entropy and All That
(
Springer Science & Business Media
,
2010
).
2.
Bandt
,
C.
and
Pompe
,
B.
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
(
17
),
174102
(
2002
).
3.
Caballero
,
M. V.
,
Matilla
,
M.
, and
Ruiz
,
M.
, “
Symbolic correlation integral
,”
Econometric Rev.
(
2017
).
4.
Collet
,
P.
and
Eckmann
,
J.-P.
,
Iterated Maps on the Interval as Dynamical Systems
(
Springer Science & Business Media
,
2009
).
5.
Donner
,
R.
,
Hinrichs
,
U.
, and
Scholz-Reiter
,
B.
, “
Symbolic recurrence plots: A new quantitative framework for performance analysis of manufacturing networks
,”
Eur. Phys. J. - Spec. Top.
164
(
1
),
85
104
(
2008
).
6.
Eckmann
,
J.-P.
,
Kamphorst
,
S. O.
, and
Ruelle
,
D.
, “
Recurrence plots of dynamical systems
,”
Europhys. Lett.
4
(
9
),
973
(
1987
).
7.
Goldberger
,
A. L.
,
Amaral
,
L. A. N.
,
Glass
,
L.
,
Hausdorff
,
J. M.
,
Ivanov
,
P. C.
,
Mark
,
R. G.
,
Mietus
,
J. E.
,
Moody
,
G. B.
,
Peng
,
C.-K.
, and
Stanley
,
H. E.
, “
PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
,”
Circulation
101
(
23
),
e215
e220
(
2000
).
8.
Grassberger
,
P.
and
Procaccia
,
I.
, “
Measuring the strangeness of strange attractors
,”
Physica D
9
(
1–2
),
189
208
(
1983
).
9.
Groth
,
A.
, “
Visualization of coupling in time series by order recurrence plots
,”
Phys. Rev. E
72
(
4
),
046220
(
2005
).
10.
Iwanski
,
J. S.
and
Bradley
,
E.
, “
Recurrence plots of experimental data: To embed or not to embed?
,”
Chaos
8
(
4
),
861
871
(
1998
).
11.
Koebbe
,
M.
and
Mayer-Kress
,
G.
, “
Use of recurrence plots in the analysis of time-series data
,” in
Proceedings of the Santa Fe Institute Studies in the Science of Complexity
(
Addison-Wesley Publishing Co.
,
1992
), Vol.
12
, pp.
361
361
.
12.
Liu
,
C.
,
Liu
,
T.
,
Liu
,
L.
, and
Liu
,
K.
, “
A new chaotic attractor
,”
Chaos, Solitons Fractals
22
(
5
),
1031
1038
(
2004
).
13.
Marwan
,
M.
, “
Encounters with Neighborhood, Theoretical Physics
,” Ph.D. thesis (
University of Potsdam
,
Germany
,
2003
).
14.
Marwan
,
N.
,
Groth
,
A.
, and
Kurths
,
J.
, “
Quantification of order patterns recurrence plots of event related potentials
,”
Chaos Complexity Lett.
Nova Science Publishers
,
2
(
2–3
),
301
314
(
2007
).
15.
Marwan
,
N.
,
Romano
,
M. C.
,
Thiel
,
M.
, and
Kurths
,
J.
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
(
5
),
237
329
(
2007
).
16.
Marwan
,
N.
,
Wessel
,
N.
,
Meyerfeldt
,
U.
,
Schirdewan
,
A.
, and
Kurths
,
J.
, “
Recurrence-plot- based measures of complexity and their application to heart-rate-variability data
,”
Phys. Rev. E
66
(
2
),
026702
(
2002
).
17.
Morse
,
H. M.
, “
Recurrent geodesics on a surface of negative curvature
,”
Trans. Am. Math. Soc.
22
(
1
),
84
100
(
1921
).
18.
Poincaré
,
H.
, “
Sur le probleme des trois corps et les equations de la dynamique
,”
Acta Math.
13
,
1
270
(
1890
).
19.
Schinkel
,
S.
,
Marwan
,
N.
, and
Kurths
,
J.
, “
Order patterns recurrence plots in the analysis of ERP data
,”
Cogn. Neurodyn.
1
(
4
),
317
325
(
2007
).
20.
Shannon
,
C. E.
, “
A mathematical theory of communication
,”
ACM SIGMOBILE Mobile Comput. Commun. Rev.
5
(
1
),
3
55
(
2001
).
21.
Sprott
,
J. C.
,
Wang
,
X.
, and
Chen
,
G.
, “
Coexistence of point, periodic and strange attractors
,”
Int. J. Bifurcation Chaos
23
(
05
),
1350093
(
2013
).
22.
Thiel
,
M.
,
Romano
,
M. C.
,
Kurths
,
J.
,
Meucci
,
R.
,
Allaria
,
E.
, and
Arecchi
,
F. T.
, “
Influence of observational noise on the recurrence quantification analysis
,”
Physica D
171
(
3
),
138
152
(
2002
).
23.
Trulla
,
L.
,
Giuliani
,
A.
,
Zbilut
,
J.
, and
Webber
, Jr.,
C.
, “
Recurrence quantification analysis of the logistic equation with transients
,”
Phys. Lett. A
223
(
4
),
255
260
(
1996
).
24.
Webber
, Jr.,
C. L.
and
Marwan
,
N.
,
Recurrence Quantification Analysis
(
Springer
,
2015
).
25.
Webber
,
C. L.
and
Zbilut
,
J. P.
, “
Dynamical assessment of physiological systems and states using recurrence plot strategies
,”
J. Appl. Physiol.
76
(
2
),
965
973
(
1994
).
26.
Zbilut
,
J. P.
,
Thomasson
,
N.
, and
Webber
,
C. L.
, “
Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals
,”
Med. Eng. Phys.
24
(
1
),
53
60
(
2002
).
27.
Zbilut
,
J. P.
and
Webber
,
C. L.
, “
Embeddings and delays as derived from quantification of recurrence plots
,”
Phys. Lett. A
171
(
3–4
),
199
203
(
1992
).
You do not currently have access to this content.