This paper, based on the concept of symbolic correlation integral, introduces a set of symbolic recurrence plots and associated invariant measures, which are independent of the distance parameter, serving as a tool for quantifying the dynamic structure. These new measures allow the study of transient behavior, coexistence of attractors, bifurcations, and structural change. The final user does not have to choose the free distance parameter. An empirical application to electrocardiography data illustrates the use of symbolic recurrence measures.
References
1.
Amigó
, J.
, Permutation Complexity in Dynamical Systems: Ordinal Patterns, Permutation Entropy and All That
(Springer Science & Business Media
, 2010
).2.
Bandt
, C.
and Pompe
, B.
, “Permutation entropy: A natural complexity measure for time series
,” Phys. Rev. Lett.
88
(17
), 174102
(2002
).3.
Caballero
, M. V.
, Matilla
, M.
, and Ruiz
, M.
, “Symbolic correlation integral
,” Econometric Rev.
(2017
).4.
Collet
, P.
and Eckmann
, J.-P.
, Iterated Maps on the Interval as Dynamical Systems
(Springer Science & Business Media
, 2009
).5.
Donner
, R.
, Hinrichs
, U.
, and Scholz-Reiter
, B.
, “Symbolic recurrence plots: A new quantitative framework for performance analysis of manufacturing networks
,” Eur. Phys. J. - Spec. Top.
164
(1
), 85
–104
(2008
).6.
Eckmann
, J.-P.
, Kamphorst
, S. O.
, and Ruelle
, D.
, “Recurrence plots of dynamical systems
,” Europhys. Lett.
4
(9
), 973
(1987
).7.
Goldberger
, A. L.
, Amaral
, L. A. N.
, Glass
, L.
, Hausdorff
, J. M.
, Ivanov
, P. C.
, Mark
, R. G.
, Mietus
, J. E.
, Moody
, G. B.
, Peng
, C.-K.
, and Stanley
, H. E.
, “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
,” Circulation
101
(23
), e215
–e220
(2000
).8.
Grassberger
, P.
and Procaccia
, I.
, “Measuring the strangeness of strange attractors
,” Physica D
9
(1–2
), 189
–208
(1983
).9.
Groth
, A.
, “Visualization of coupling in time series by order recurrence plots
,” Phys. Rev. E
72
(4
), 046220
(2005
).10.
Iwanski
, J. S.
and Bradley
, E.
, “Recurrence plots of experimental data: To embed or not to embed?
,” Chaos
8
(4
), 861
–871
(1998
).11.
Koebbe
, M.
and Mayer-Kress
, G.
, “Use of recurrence plots in the analysis of time-series data
,” in Proceedings of the Santa Fe Institute Studies in the Science of Complexity
(Addison-Wesley Publishing Co.
, 1992
), Vol. 12
, pp. 361
–361
.12.
Liu
, C.
, Liu
, T.
, Liu
, L.
, and Liu
, K.
, “A new chaotic attractor
,” Chaos, Solitons Fractals
22
(5
), 1031
–1038
(2004
).13.
Marwan
, M.
, “Encounters with Neighborhood, Theoretical Physics
,” Ph.D. thesis (University of Potsdam
, Germany
, 2003
).14.
Marwan
, N.
, Groth
, A.
, and Kurths
, J.
, “Quantification of order patterns recurrence plots of event related potentials
,” Chaos Complexity Lett.
Nova Science Publishers
, 2
(2–3
), 301
–314
(2007
).15.
Marwan
, N.
, Romano
, M. C.
, Thiel
, M.
, and Kurths
, J.
, “Recurrence plots for the analysis of complex systems
,” Phys. Rep.
438
(5
), 237
–329
(2007
).16.
Marwan
, N.
, Wessel
, N.
, Meyerfeldt
, U.
, Schirdewan
, A.
, and Kurths
, J.
, “Recurrence-plot- based measures of complexity and their application to heart-rate-variability data
,” Phys. Rev. E
66
(2
), 026702
(2002
).17.
Morse
, H. M.
, “Recurrent geodesics on a surface of negative curvature
,” Trans. Am. Math. Soc.
22
(1
), 84
–100
(1921
).18.
Poincaré
, H.
, “Sur le probleme des trois corps et les equations de la dynamique
,” Acta Math.
13
, 1
–270
(1890
).19.
Schinkel
, S.
, Marwan
, N.
, and Kurths
, J.
, “Order patterns recurrence plots in the analysis of ERP data
,” Cogn. Neurodyn.
1
(4
), 317
–325
(2007
).20.
Shannon
, C. E.
, “A mathematical theory of communication
,” ACM SIGMOBILE Mobile Comput. Commun. Rev.
5
(1
), 3
–55
(2001
).21.
Sprott
, J. C.
, Wang
, X.
, and Chen
, G.
, “Coexistence of point, periodic and strange attractors
,” Int. J. Bifurcation Chaos
23
(05
), 1350093
(2013
).22.
Thiel
, M.
, Romano
, M. C.
, Kurths
, J.
, Meucci
, R.
, Allaria
, E.
, and Arecchi
, F. T.
, “Influence of observational noise on the recurrence quantification analysis
,” Physica D
171
(3
), 138
–152
(2002
).23.
Trulla
, L.
, Giuliani
, A.
, Zbilut
, J.
, and Webber
, Jr., C.
, “Recurrence quantification analysis of the logistic equation with transients
,” Phys. Lett. A
223
(4
), 255
–260
(1996
).24.
Webber
, Jr., C. L.
and Marwan
, N.
, Recurrence Quantification Analysis
(Springer
, 2015
).25.
Webber
, C. L.
and Zbilut
, J. P.
, “Dynamical assessment of physiological systems and states using recurrence plot strategies
,” J. Appl. Physiol.
76
(2
), 965
–973
(1994
).26.
Zbilut
, J. P.
, Thomasson
, N.
, and Webber
, C. L.
, “Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals
,” Med. Eng. Phys.
24
(1
), 53
–60
(2002
).27.
Zbilut
, J. P.
and Webber
, C. L.
, “Embeddings and delays as derived from quantification of recurrence plots
,” Phys. Lett. A
171
(3–4
), 199
–203
(1992
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.