By slight modification of the data of the Sierpiński gasket, keeping the open set condition fulfilled, we obtain self-similar sets with very dense parts, similar to fractals in nature and in random models. This is caused by a complicated structure of the open set and is revealed only under magnification. Thus, the family of self-similar sets with separation condition is much richer and has higher modelling potential than usually expected. An interactive computer search for such examples and new properties for their classification are discussed.

1.
C.
Bandt
, “
Self-similar sets 5. Integer matrices and fractal tilings of n
,”
Proc. Am. Math. Soc.
112
,
549
562
(
1991
).
2.
C.
Bandt
, “
Local geometry of fractals given by tangent measure distributions
,”
Monatsh. Math.
133
,
265
280
(
2001
).
3.
C.
Bandt
and
S.
Graf
, “
Self-similar sets 7. A characterization of self-similar fractals with positive Hausdorff measure
,”
Proc. Am. Math. Soc.
114
(
4
),
995
1001
(
1992
).
4.
C.
Bandt
and
M.
Mesing
, Self-affine fractals of finite type. Convex and fractal geometry, 131-148, Banach Center Publ., 84, Polish Acad. Sci. Inst. Math., Warsaw,
2009
.
5.
C.
Bandt
,
N. V.
Hung
, and
H.
Rao
, “
On the open set condition for self-similar fractals
,”
Proc. Am. Math. Soc.
134
,
1369
1374
(
2005
).
6.
C.
Bandt
,
D.
Mekhontsev
, and
A.
Tetenov
, “
A single fractal pinwheel tile
,”
Proc. Am. Math. Soc.
146
,
1271
1285
(
2018
).
7.
M. F.
Barnsley
,
Fractals Everywhere
, 2nd ed. (
Academic Press
,
1993
).
8.
P.
Duvall
,
J.
Keesling
, and
A.
Vince
, “
The Hausdorff dimension of the boundary of a self-similar tile
,”
J. London Math. Soc.
61
,
748
760
(
2000
).
9.
K. J.
Falconer
,
Fractal Geometry. Mathematical Foundations and Applications
(
Wiley
,
1990
).
10.
K. J.
Falconer
and
J. J.
O'Connor
, “
Symmetry and enumeration of self-similar fractals
,”
Bull. London Math. Soc.
39
,
272
282
(
2007
).
11.
M.
Hochman
, “
Dynamics on fractals and fractal distributions
,” e-print arXiv:1008.3731v2 (
2013
).
12.
B.
Loridant
, “
Crystallographic number systems
,”
Monatsh. Math.
167
,
511
529
(
2012
).
13.
K.-S.
Lau
,
J. J.
Luo
, and
H.
Rao
, “
On the topology of fractal squares
,”
Math. Proc. Cambridge Philos. Soc.
155
,
73
86
(
2013
).
14.
D.
Mekhontsev
, IFSTile.com Version 1.7.0.2 (January
2018
) was used for this paper.
15.
P. A. P.
Moran
, “
Additive functions of intervals and Hausdorff measure
,”
Math. Proc. Cambridge Philos. Soc.
42
,
15
23
(
1946
).
16.
M.
Morán
, “
Dynamical boundary of a self-similar set
,”
Fund. Math.
160
(
1
),
1
14
(
1999
).
17.
H.-O.
Peitgen
,
H.
Jürgens
, and
D.
Saupe
,
Chaos and Fractals, New Frontiers of Science
(
Springer
,
1992
).
18.
K.
Scheicher
and
J. M.
Thuswaldner
, “
Neighbors of self-affine tiles in lattice tilings
,” in
Fractals in Graz 2001
, edited by
P.
Grabner
and
W.
Woess
(
Birkhäuser
,
2003
), pp.
241
262
.
19.
A.
Schief
, “
Separation properties for self-similar sets
,”
Proc. Am. Math. Soc.
122
,
111
115
(
1994
).
20.
R. S.
Strichartz
and
Y.
Wang
, “
Geometry of self-affine tiles I
,”
Indiana Univ. Math. J.
48
(
1
),
1
24
(
1999
).
You do not currently have access to this content.