We consider a discrete-time version of the continuous-time fashion cycle model introduced in Matsuyama, 1992. Its dynamics are defined by a 2D discontinuous piecewise linear map depending on three parameters. In the parameter space of the map periodicity, regions associated with attracting cycles of different periods are organized in the period adding and period incrementing bifurcation structures. The boundaries of all the periodicity regions related to border collision bifurcations are obtained analytically in explicit form. We show the existence of several partially overlapping period incrementing structures, that is, a novelty for the considered class of maps. Moreover, we show that if the time-delay in the discrete time formulation of the model shrinks to zero, the number of period incrementing structures tends to infinity and the dynamics of the discrete time fashion cycle model converges to those of continuous-time fashion cycle model.

1.
V.
Avrutin
,
M.
Schanz
, and
L.
Gardini
, “
Calculation of bifurcation curves by map replacement
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
20
,
3105
(
2010
).
2.
V.
Avrutin
and
I.
Sushko
, “
A gallery of bifurcation scenarios in piecewise smooth 1D maps
,” in
Global Analysis of Dynamic Models for Economics, Finance and Social Sciences, edited by
G.-I.
Bischi
,
C.
Chiarella
, and
I.
Sushko
(
Springer
,
2013
).
3.
M.
di Bernardo
,
C. J.
Budd
,
A. R.
Champneys
, and
P.
Kowalczyk
,
Piecewise-Smooth Dynamical Systems: Theory and Applications
, Applied Mathematical Sciences Vol. 163 (
Springer
,
2008
).
4.
P. L.
Boyland
, “
Bifurcations of circle maps: Arnold tongues, bistability and rotation intervals
,”
Commun. Math. Phys.
106
(
3
),
353
381
(
1986
).
5.
L.
Gardini
,
V.
Avrutin
, and
I.
Sushko
, “
Codimension-2 border collision bifurcations in one-dimensional discontinuous piecewise smooth maps
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
24
(2),
1450024
(
2014
).
6.
A. J.
Homburg
,
Global Aspects of Homoclinic Bifurcations of Vector Fields
(
Springer-Verlag
,
Berlin
,
1996
).
7.
S.
Ito
,
S.
Tanaka
, and
H.
Nakada
, “
On unimodal transformations and chaos II
,”
Tokyo J. Math.
2
,
241
259
(
1979
).
8.
J. P.
Keener
, “
Chaotic behavior in piecewise continuous difference equations
,”
Trans. Am. Math. Soc.
261
,
589
604
(
1980
).
9.
N. N.
Leonov
, “
Map of the line onto itself
,”
Radiofisika
3
,
942
956
(
1959
).
10.
D. V.
Lyubimov
,
A. S.
Pikovsky
, and
M. A.
Zaks
,
Universal Scenarios of Transitions to Chaos via Homoclinic Bifurcations
(
Harwood Academic
,
London
,
1989
), Vol.
8
.
11.
Y. L.
Maistrenko
,
V. L.
Maistrenko
, and
L. O.
Chua
, “
Cycles of chaotic intervals in a time-delayed Chua's circuit
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
3
,
1557
(
1993
).
12.
K.
Matsuyama
, “
Custom versus fashion: Path-dependence and limit cycles in a random matching game
,” Discussion Paper No. 1030, Dept. of Economics, Northwestern University (
1992
).
13.
C.
Mira
, “
Embedding of a Dim1 piecewise continuous and linear leonov map into a Dim2 invertible map
,” in
Global Analysis of Dynamic Models for Economics, Finance and Social Sciences
, edited by
G.-I.
Bischi
,
C.
Chiarella
, and
I.
Sushko
(
Springer
,
2013
).
14.
H. E.
Nusse
and
J. A.
Yorke
, “
Border-collision bifurcations including period two to period three for piecewise smooth systems
,”
Phys. D
57
,
39
57
(
1992
).
15.
H. E.
Nusse
and
J. A.
Yorke
, “
Border-collision bifurcations for piecewise smooth one-dimensional maps
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
5
,
189
(
1995
).
16.
A.
Panchuk
,
I.
Sushko
,
B.
Schenke
, and
V.
Avrutin
, “
Bifurcation structure in bimodal piecewise linear map
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
23
(
12
),
1330040
(
2013
).
17.
D. J. W.
Simpson
and
J. D.
Meiss
, “
Neimark-Sacker bifurcations in planar, piecewise-smooth, continuous maps
,”
SIAM J. Appl. Dyn. Syst.
7
,
795
824
(
2008
).
18.
I.
Sushko
,
V.
Avrutin
, and
L.
Gardini
, “
Bifurcation structure in the skew tent map and its application as a border collision normal form
,”
J. Differ. Equations Appl.
22
(8),
1040
1087
(
2015
).
19.
I.
Sushko
and
L.
Gardini
, “
Center bifurcation for two-dimensional border-collision normal form
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
18
(
4
),
1029
(
2008
).
20.
I.
Sushko
,
L.
Gardini
, and
V.
Avrutin
, “
Nonsmooth one-dimensional maps: Some basic concepts and definitions
,”
J. Differ. Eqs. Appl.
22
,
1816
1870
(
2016
).
21.
F.
Tramontana
,
I.
Sushko
, and
V.
Avrutin
, “
Period adding structure in a 2D discontinuous model of economic growth
,”
Appl. Math. Comput.
253
,
262
273
(
2015
).
22.
Z. T.
Zhusubaliyev
and
E.
Mosekilde
,
Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems
, Nonlinear Science Series A Vol. 44 (
World Scientific
,
2003
).
23.
Z. T.
Zhusubaliyev
,
E.
Mosekilde
,
S.
Maity
,
S.
Mohanan
, and
S.
Banerjee
, “
Border collision route to quasiperiodicity: Numerical investigation and experimental confirmation
,”
Chaos
16
,
023122
(
2006
).
You do not currently have access to this content.