The paper proposes an evolutionary version of a Schelling-type dynamic system to model the patterns of residential segregation when two groups of people are involved. The payoff functions of agents are the individual preferences for integration which are empirically grounded. Differently from Schelling's model, where the limited levels of tolerance are the driving force of segregation, in the current setup agents benefit from integration. Despite the differences, the evolutionary model shows a dynamics of segregation that is qualitatively similar to the one of the classical Schelling's model: segregation is always a stable equilibrium, while equilibria of integration exist only for peculiar configurations of the payoff functions and their asymptotic stability is highly sensitive to parameter variations. Moreover, a rich variety of integrated dynamic behaviors can be observed. In particular, the dynamics of the evolutionary game is regulated by a one-dimensional piecewise smooth map with two kink points that is rigorously analyzed using techniques recently developed for piecewise smooth dynamical systems. The investigation reveals that when a stable internal equilibrium exists, the bimodal shape of the map leads to several different kinds of bifurcations, smooth, and border collision, in a complicated interplay. Our global analysis can give intuitions to be used by a social planner to maximize integration through social policies that manipulate people's preferences for integration.

1.
Avrutin
,
V.
,
Gardini
,
L.
,
Schanz
,
M.
, and
Sushko
,
I.
, “
Bifurcations of chaotic attractors in one-dimensional piecewise smooth maps
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
24
,
1440012
(
2014a
).
2.
Avrutin
,
V.
,
Sushko
,
I.
, and
Gardini
,
L.
, “
Cyclicity of chaotic attractors in one-dimensional discontinuous maps
,”
Math. Comput. Simul.
95
,
126
136
(
2014b
).
3.
Banerjee
,
S.
,
Yorke
,
J. A.
, and
Grebogi
,
C.
, “
Robust chaos
,”
Phys. Rev. Lett.
80
,
3049
3052
(
1998
).
4.
Bischi
,
G.-I.
and
Merlone
,
U.
, “
An adaptive dynamic model of segregation
,” in
Nonlinear Economic Dynamics
(
Nova Science Publisher
,
2011
), pp.
191
205
.
5.
Bossan
,
B.
,
Jann
,
O.
, and
Hammerstein
,
P.
, “
The evolution of social learning and its economic consequences
,”
J. Econ. Behav. Organ.
112
,
266
288
(
2015
).
6.
Bruch
,
E. E.
and
Mare
,
R. D.
, “
Neighborhood choice and neighborhood change
,”
Am. J. Sociol.
112
,
667
709
(
2006
).
7.
Clark
,
W. A. V.
, “
Residential preferences and neighborhood racial segregation: A test of the Schelling segregation model
,”
Demography
28
,
1
19
(
1991
).
8.
Davis
,
J. A.
and
Smith
,
T. W.
, “
General social surveys, 1972-1994
,”
Tech. Rep. No. 14
(Machine-readable data file, National Opinion Research Center, Chicago (producer), Storrs, C. T., The Roper Center for Public Opinion Research (distributor),
1994
).
9.
Dokumaci
,
E.
and
Sandholm
,
W. H.
,
Shelling Redux: An Evolutionary Dynamic Model of Residential Segregation
(
University of Wisconsin-Madison
,
2006
).
10.
Epstein
,
J. M.
and
Axtell
,
R.
,
Growing Artificial Societies: Social Science From the Bottom Up
(
MIT Press
,
Cambridge, MA
,
1996
).
11.
Fagiolo
,
G.
,
Valente
,
M.
, and
Vriend
,
N. J.
, “
Segregation in networks
,”
J. Econ. Behav. Organ.
64
,
316
336
(
2007
).
12.
Glaeser
,
E. L.
and
Vigdor
,
J. L.
, “
Racial segregation in the 2000 Census: Promising news,” in
Brookings Institution Survey Series
(
Brookings Institution
,
Washington
,
2001
).
13.
Hamilton
,
W. D.
, “
Selfish and spiteful behavior in an evolutionary model
,”
Nature
228
,
1218
1220
(
1970
).
14.
Harris
,
D.
, “
Property values drop when Blacks move in, because …': Racial and socioeconomic determinants of neighborhood desirability
,”
Am. Sociol. Rev.
64
,
461
479
(
1999
).
15.
Hofbauer
,
J.
and
Sigmund
,
K.
, “
Evolutionary game dynamics
,”
Bull. Am. Math. Soc.
40
,
479
519
(
2003
).
16.
Krysan
,
M.
and
Farley
,
R.
, “
The residential preferences of Blacks: Do they explain persistent segregation?
,”
Soc. Forces
80
,
937
980
(
2002
).
17.
Logan
,
J. R.
,
Stults
,
B. J.
, and
Farley
,
R.
, “
Segregation of minorities in the metropolis: Two decades of change
,”
Demography
41
,
1
22
(
2004
).
18.
Maistrenko
,
Y. L.
,
Maistrenko
,
V. L
, and
Vikul
,
S. I.
, “
On period-adding sequences of attracting cycles in piecewise linear maps
,”
Chaos, Solitons Fractals
9
,
67
75
(
1998
).
19.
Massey
,
D. S.
and
Denton
,
N. A.
, “
Trends in the residential segregation of Blacks, Hispanics, and Asians: 1970-1980
,”
Am. Sociol. Rev.
52
,
802
825
(
1987
).
20.
Massey
,
D. S.
and
Denton
,
N. A.
,
American Apartheid: Segregation and the Making of the Underclass
(
Harward University Press
,
Cambridge, MA
,
1993
).
21.
Nusse
,
H. E.
and
Yorke
,
J. A.
, “
Border-collision bifurcations for piecewise smooth one-dimensional maps
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
5
,
189
207
(
1995
).
22.
Panchuk
,
A.
,
Sushko
,
I.
,
Schenke
,
B.
, and
Avrutin
,
V.
, “
Bifurcation structures in a bimodal piecewise linear map: Regular dynamics
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
23
,
1330040
(
2013
).
23.
Pancs
,
R.
and
Vriend
,
J. N.
, “
Schelling's spatial proximity model of segregation revisited
,”
J. Public Econ.
91
,
1
24
(
2007
).
24.
Radi
,
D.
and
Gardini
,
L.
, “
Entry limitations and heterogeneous tolerances in a Schelling-like segregation model
,”
Chaos, Solitons Fractals
79
,
130
144
(
2015
).
25.
Radi
,
D.
,
Gardini
,
L.
, and
Avrutin
,
V.
, “
The role of constraints in a segregation model: The asymmetric case
,”
Discrete Dyn. Nat. Soc.
2014
,
569296
(
2014a
).
26.
Radi
,
D.
,
Gardini
,
L.
, and
Avrutin
,
V.
, “
The role of constraints in a segregation model: The symmetric case
,”
Chaos, Solitons Fractals
66
,
103
119
(
2014b
).
27.
Schaffer
,
M. E.
, “
Are profit-maximisers the best survivors?: A Darwinian model of economic natural selection
,”
J. Econ. Behav. Organ.
12
,
29
45
(
1989
).
28.
Schelling
,
T. C.
, “
Models of segregation
,”
Am. Econ. Rev.
59
,
488
493
(
1969
).
29.
Schelling
,
T. C.
, “
Dynamic models of segregation
,”
J. Math. Sociol.
1
,
143
186
(
1971
).
30.
Schelling
,
T. C.
,
Micromotives and Macrobehavior
(
W. W. Norton
,
New York
,
1978
).
31.
Schuman
,
H.
,
Steeh
,
C.
,
Bobo
,
L. D.
, and
Krysan
,
M.
,
Racial Attitudes in America: Trends and Interpretations
(
Harvard University Press
,
Cambridge, MA
,
1997
).
32.
Sushko
,
I.
,
Avrutin
,
V.
, and
Gardini
,
L.
, “
Bifurcation structure in the skew tent map and its application as a border collision normal form
,”
J. Difference Equations Appl.
22
,
1040
1087
(
2016a
).
33.
Sushko
,
I.
,
Gardini
,
L.
, and
Avrutin
,
V.
, “
Nonsmooth one-dimensional maps: Some basic concepts and definitions
,”
J. Differ. Equations Appl.
22
,
1816
1870
(
2016b
).
34.
Zhang
,
J.
, “
Residential segregation in an all-integrationist world
,”
J. Econ. Behav. Organ.
54
,
533
550
(
2004
).
35.
Zhang
,
J.
, “
Tipping and residential segregation: A unified Schelling model
,”
J. Reg. Sci.
51
,
167
193
(
2011
).
You do not currently have access to this content.