We propose a discrete-time exchange economy evolutionary model, in which two groups of agents are characterized by different preference structures. The reproduction level of a group is related to its attractiveness degree, which depends on the social visibility level, determined by the consumption choices of the agents in that group. The attractiveness of a group is initially increasing with its visibility level, but it becomes decreasing when its visibility exceeds a given threshold value, due to a congestion effect. Thanks to the combined action of the price mechanism and of the share updating rule, the model is able to reproduce the recurrent dynamic behavior typical of the fashion cycle, presenting booms and busts both in the agents' consumption choices and in the population shares. More precisely, we investigate the existence of equilibria and their stability, and we perform a qualitative bifurcation analysis on varying the parameter describing the group's heterogeneity degree. From a global viewpoint, we detect, among others, multistability phenomena in which the group coexistence is dynamic, either regular or irregular, and the fashion cycle occurs. The existence of complex dynamics is proven via the method of the turbulent maps, working with homoclinic orbits. Finally, we provide a social and economic interpretation of the main scenarios.

1.
Adler
,
R. L.
,
Konheim
,
A. G.
, and
McAndrew
,
M. H.
, “
Topological entropy
,”
Trans. Am. Math. Soc.
114
,
309
319
(
1965
).
2.
Antoci
,
A.
,
Brugnano
,
L.
, and
Galeotti
,
M.
, “
Sustainability, indeterminacy and oscillations in a growth model with environmental assets
,”
Nonlinear Anal. Real World Appl.
5
,
571
587
(
2004
).
3.
Arthur
,
W. B.
,
Increasing Returns and Path Dependence in the Economy
(
University of Michigan Press
,
Ann Arbor, MI
,
1994
).
4.
Bianchi
,
M.
, “
Novelty, preferences, and fashion: When goods are unsettling
,”
J. Econ. Behav. Organ.
47
,
1
18
(
2002
).
5.
Bischi
,
G.-I.
and
Radi
,
D.
, “
An extension of the Antoci-Dei-Galeotti evolutionary model for environment protection through financial instruments
,”
Nonlinear Anal. Real World Appl.
13
,
432
440
(
2012
).
6.
Block
,
L. S.
and
Coppel
,
W. A.
,
Dynamics in One Dimension
, Springer Lecture Notes, Vol.
1513
(
Springer Verlag
,
Berlin
,
1992
).
7.
Caulkins
,
J. P.
,
Hartl
,
R. F.
,
Kort
,
P. M.
, and
Feichtinger
,
G.
, “
Explaining fashion cycles: Imitators chasing innovators in product space
,”
J. Econ. Dyn. Control
31
,
1535
1556
(
2007
).
8.
Chang
,
J.
and
Stauber
,
R.
, “
Evolution of preferences in an exchange economy
,”
Econ. Lett.
103
,
131
134
(
2009
).
9.
Coelho
,
P. R. P.
and
McClure
,
J. E.
, “
Toward an economic theory of fashion
,”
Econ. Inq.
31
,
595
608
(
1993
).
10.
Corneo
,
G.
and
Jeanne
,
O.
, “
Segmented communication and fashionable behavior
,”
J. Econ. Behav. Organ.
39
,
371
385
(
1999
).
11.
Di Giovinazzo
,
V.
and
Naimzada
,
A.
, “
A model of fashion: Endogenous preferences in social interaction
,”
Econ. Model.
47
,
12
17
(
2015
).
12.
Diamond
,
P. A.
, “
National debt in a neoclassical growth model
,”
Am. Econ. Rev.
55
,
1126
1150
(
1965
).
13.
Frijters
,
P.
, “
A model of fashions and status
,”
Econ. Model.
15
,
501
517
(
1998
).
14.
Gardini
,
L.
, “
Homoclinic bifurcations in n-dimensional endomorphisms, due to expanding periodic points
,”
Nonlinear Anal. Methods Appl.
23
,
1039
1089
(
1994
).
15.
Gardini
,
L.
,
Sushko
,
I.
,
Avrutin
,
V.
, and
Schanz
,
M.
, “
Critical homoclinic orbits lead to snap-back repellers
,”
Chaos Solitons Fractals
44
,
433
449
(
2011
).
16.
Karni
,
E.
and
Schmeidler
,
D.
, “
Fixed preferences and changing tastes
,”
Am. Econ. Rev.
80
,
262
267
(
1990
).
17.
Marotto
,
F. R.
, “
Snap-back repellers imply chaos in Rn
,”
J. Math. Anal. Appl.
63
,
199
223
(
1978
).
18.
Matsuyama
,
K.
, “
Custom versus fashion: Path-dependence and limit cycles in a random matching game
,” working Paper in Economics, E-92-11, Hoover Institution, Northwestern University CMS-EMS DP # 1030 (
1991
).
19.
Nachbar
,
J. H.
, “
“Evolutionary” selection dynamics in games: Convergence and limit properties
,”
Int. J. Game Theory
19
,
59
89
(
1990
).
20.
Naimzada
,
A.
and
Pireddu
,
M.
, “
Endogenous evolution of heterogeneous consumers preferences: Multistability and coexistence between groups
,”
Econ. Lett.
142
,
22
26
(
2016
).
21.
Naimzada
,
A.
and
Pireddu
,
M.
, “
Complex dynamics in an evolutionary general equilibrium model
,”
Discrete Dyn. Nat. Soc.
2018a
, article ID
8471624
.
22.
Naimzada
,
A.
and
Pireddu
,
M.
, “
An evolutive discrete exchange economy model with heterogeneous preferences
,”
Chaos Solitons Fractals
111
,
35
43
(
2018b
).
23.
Naimzada
,
A.
and
Pireddu
,
M.
, “
Strong coexistence for a model with endogenous evolution of heterogeneous agents
,”
Commun. Nonlinear Sci. Numer. Simul.
(in press,
2018c
).
24.
Naimzada
,
A.
,
Sacco
,
P.
, and
Sodini
,
M.
, “
Wealth-sensitive positional competition as a source of dynamic complexity in OLG models
,”
Nonlinear Anal. Real World Appl.
14
,
1
13
(
2013
).
25.
Onozaki
,
T.
,
Nonlinearity, Bounded Rationality, and Heterogeneity. Some Aspects of Market Economies as Complex Systems
(
Springer
,
Japan, Tokyo
,
2018
).
26.
Pesendorfer
,
W.
, “
Design innovation and fashion cycles
,”
Am. Econ. Rev.
85
,
771
792
(
1995
).
27.
Sandholm
,
W. H.
,
Population Games and Evolutionary Dynamics
(
MIT Press
,
Cambridge
,
2010
).
28.
Simmel
,
G.
, “
Fashion
,”
Am. J. Sociol.
62
,
541
558
(
1957
).
29.
Taylor
,
P. D.
and
Jonker
,
L. B.
, “
Evolutionarily stable strategies and game dynamics
,”
Math. Biosci.
40
,
145
156
(
1978
).
30.
Vigneron
,
F.
and
Johnson
,
W.
, “
A review and a conceptual framework of prestige-seeking consumer behavior
,”
Acad. Mark. Sci. Rev.
3
, (
1999
).
31.
Villanacci
,
A.
,
Carosi
,
L.
,
Benevieri
,
P.
, and
Battinelli
,
A.
,
Differential Topology and General Equilibrium with Complete and Incomplete Markets
(
Kluwer
,
Dordrecht
,
2002
).
32.
Wiggins
,
S.
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics
, 2nd ed. (
Springer
,
New York
,
2003
).
33.
Zhang
,
W.-B.
, “
Fashion with snobs and bandwagoners in a three-type households and three-sector neoclassical growth model
,”
Rev. Mex. Econ. Finanz
11
,
1
19
(
2016
).
34.
Zhang
,
W.-B.
, “
Fashion and business cycles with snobs and bandwagoners in a multi-sector growth model
,”
J. Bus.
2
,
1
13
(
2017
).
You do not currently have access to this content.