We study the special case of a nonlinear stochastic consumption model taking the form of a 2-dimensional, non-invertible map with an additive stochastic component. Applying the concept of the stochastic sensitivity function and the related technique of confidence domains, we establish the conditions under which the system's complex consumption attractor is likely to become observable. It is shown that the level of noise intensities beyond which the complex consumption attractor is likely to be observed depends on the weight given to past consumption in an individual's preference adjustment.

1.
Bashkirtseva
,
I.
and
Ryashko
,
L.
, “
Stochastic sensitivity analysis of the attractors for the randomly forced ricker model with delay
,”
Phys. Lett. A
378
,
3600
3606
(
2014
).
2.
Bashkirtseva
,
I.
,
Ryashko
,
L.
, and
Tsvetkov
,
I.
, “
Sensitivity analysis of stochastic equilibria and cycles for discrete dynamic systems
,”
Dyn. Contin., Discrete Impulsive Syst. Ser. A
17
,
501
515
(
2010
).
3.
Benhabib
,
J.
and
Day
,
R. H.
, “
Rational choice and erratic behaviour
,”
Rev. Econ. Stud.
48
,
459
471
(
1981
).
4.
Ekaterinchuk
,
E.
,
Jungeilges
,
J.
,
Ryazanova
,
T.
, and
Sushko
,
I.
, “
Dynamics of a minimal consumer network with bi-directional influence
,”
Commun. Nonlinear Sci. Numer. Simul.
58
,
107
118
(
2017a
).
5.
Ekaterinchuk
,
E.
,
Jungeilges
,
J.
,
Ryazanova
,
T.
, and
Sushko
,
I.
, “
Dynamics of a minimal consumer network with uni-directional influence
,”
J. Evol. Econ.
27
,
831
857
(
2017b
).
6.
Feichtinger
,
G.
,
Prskawetz
,
A.
,
Herold
,
W.
, and
Zinner
,
P.
, “
Habit formation with threshold adjustment: Addiction may imply complex dynamics
,”
J. Evol. Econ.
5
,
157
172
(
1995
).
7.
Gaertner
,
W.
, “
Periodic and aperiodic consumer behavior
,”
Appl. Math. Comput.
22
,
233
254
(
1987
).
8.
Gaertner
,
W.
and
Jungeilges
,
J.
, “
A non-linear model of interdependent consumer behaviour
,”
Econ. Lett.
27
,
145
150
(
1988
).
9.
Gaertner
,
W.
and
Jungeilges
,
J.
, ““
Spindles” and coexisting attractors in a dynamic model of interdependent consumer behavior: A note
,”
J. Econ. Behav. Org.
21
,
223
231
(
1993
).
10.
Lee
,
H.
, “
Analytical study of the superstable 3-cycle in the logistic map
,”
J. Math. Phys.
50
,
1227021
1227026
(
2009
).
11.
Milstein
,
G.
and
Ryashko
,
L.
, “
The first approximation in the quasipotential problem of stability of non-degenerate systems with random perturbations
,”
Appl. Math. Mech.
59
,
47
56
(
1995
) (in Russian).
12.
Naimzada
,
A. K.
and
Tramontana
,
F.
, “
Global analysis and focal points in a model with boundedly rational consumers
,”
Int. J. Bifurcation Chaos
19
,
2059
2071
(
2009
).
You do not currently have access to this content.