In this paper, we propose an evolutionary oligopoly game of technology adoption in a market with isoelastic demand and two possible (linear) production technologies. While one technology is characterized by lower marginal costs, the magnitude of fixed costs entails that a technology does not necessarily dominate the other. Firms are forward-looking as they assess the profitability of employing either technology according to the corresponding expected profits. The dynamics of the system is studied through a piecewise-smooth map, for which we present a local stability analysis of equilibria and show the occurrence of smooth and border collision bifurcations. Global analysis of the model is also presented to show the coexistence of attractors and its economic significance. This investigation reveals that firms can fail to learn to adopt the more efficient technology.

1.
Agliari
,
A.
,
Naimzada
,
A.
, and
Pecora
,
N.
, “
Dynamic effects of memory in a cobweb model with competing technologies
,”
Phys. A
468
,
340
350
(
2017
).
2.
Anufriev
,
M.
and
Hommes
,
C.
, “
Evolutionary selection of individual expectations and aggregate outcomes in asset pricing experiments
,”
Am. Econ. J.: Microeconomics
4
,
35
64
(
2012
).
3.
Arnold
,
L.
,
Random Dynamical Systems
(
Springer
,
1998
).
4.
Bischi
,
G. I.
,
Chiarella
,
C.
,
Kopel
,
M.
, and
Szidarovszky
,
F.
,
Nonlinear Oligopolies: Stability and Bifurcations
(
Springer-Verlag
,
2010
).
5.
Bischi
,
G. I.
,
Lamantia
,
F.
, and
Radi
,
D.
, “
An evolutionary Cournot model with limited market knowledge
,”
J. Econ. Behav. Organ.
116
,
219
238
(
2015
).
6.
Bischi
,
G.-I.
,
Lamantia
,
F.
, and
Radi
,
D.
, “
Evolutionary oligopoly games with heterogeneous adaptive players
,” in
Handbook of Game Theory and Industrial Organization, Volume i, Theory
(
Elgar
,
2018
), eISBN: 978 1 78536 328 3.
7.
Cabrales
,
A.
and
Sobel
,
J.
, “
On the limit points of discrete selection dynamics
,”
J. Econ. Theory
57
,
407
419
(
1992
).
8.
Cavalli
,
F.
,
Naimzada
,
A.
, and
Pireddu
,
M.
, “
Effects of size, composition, and evolutionary pressure in heterogeneous Cournot oligopolies with best response decisional mechanisms
,”
Discrete Dyn. Nat. Soc.
2015
,
273026
(
2015
).
9.
Cerboni Baiardi
,
L.
,
Lamanta
,
F.
, and
Radi
,
D.
, “
Evolutionary competition between boundedly rational behavioral rules in oligopoly games
,”
Chaos, Solitons Fractals
79
,
204
225
(
2015
).
10.
Dawid
,
H.
, “
Agent-based models of innovation and technological change
,” in
Handbook of Computational Economics
(
North-Holland
,
2006
), Vol. 2, pp.
1235
1272
.
11.
De Giovanni
,
D.
and
Lamantia
,
F.
, “
Control delegation, information and beliefs in evolutionary oligopolies
,”
J. Evol. Econ.
27
,
877
903
(
2016
).
12.
De Giovanni
,
D.
and
Lamantia
,
F.
, “
Evolutionary dynamics of a duopoly game with strategic delegation and isoelastic demand
,”
J. Evol. Econ.
26
(
5
),
1089
1116
(
2017
).
13.
Devaney
,
R. L.
,
An Introduction to Chaotic Dynamical Systems
(
Allan M. Wylde
,
1989
).
14.
Dicks
,
C.
,
Hommes
,
C.
, and
Zeppini
,
P.
, “
More memory under evolutionary learning may lead to chaos
,”
Phys. A
392
,
808
812
(
2013
).
15.
Dosi
,
G.
,
Sodini
,
M.
, and
Virgillito
,
M. E.
, “
Profit-driven and demand-driven investment growth and fluctuations in different accumulation regimes
,”
J. Evol. Econ.
25
,
707
728
(
2015
).
16.
Droste
,
E.
,
Hommes
,
C. H.
, and
Tuinstra
,
J.
, “
Endogenous fluctuations under evolutionary pressure in Cournot competition
,”
Games Econ. Behav.
40
,
232
269
(
2002
).
17.
Hamilton
,
W. D.
, “
Selfish and spiteful behavior in an evolutionary model
,”
Nature
228
,
1218
1220
(
1970
).
18.
Hofbauer
,
J.
and
Sigmund
,
K.
,
Evolutionary Games and Population Dynamics
(
Cambridge University Press
,
Beverly Hills, CA
,
1998
).
19.
Hofbauer
,
J.
and
Sigmund
,
K.
, “
Evolutionary game dynamics
,”
Bull. Am. Math. Soc.
40
,
479
519
(
2003
).
20.
Hofbauer
,
J.
and
Weibull
,
J. W.
, “
Evolutionary selection against dominated strategies
,”
J. Econ. Theory
71
,
558
573
(
1996
).
21.
Hommes
,
C.
,
Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems
(
Cambridge University Press
,
2013
).
22.
Hommes
,
C.
and
Zeppini
,
P.
, “
Innovate or imitate? behavioural technological change
,”
J. Econ. Dyn. Control
48
,
308
324
(
2014
).
23.
Hommes
,
C. H.
,
Ochea
,
M. I.
, and
Tuinstra
,
J.
, “
Evolutionary competition between adjustment processes in Cournot oligopoly: Instability and complex dynamics
,”
Dyn. Games Appl.
(published online
2018
).
24.
Huyck
,
J. B. V.
,
Cook
,
J. P.
, and
Battalio
,
R. C.
, “
Selection dynamics, asymptotic stability, and adaptive behavior
,”
J. Political Econ.
102
,
975
1005
(
1984
).
25.
Kopel
,
M.
,
Lamantia
,
F.
, and
Szidarovszky
,
F.
, “
Evolutionary competition in a mixed market with socially concerned firms
,”
J. Econ. Dyn. Control
48
,
394
409
(
2014
).
26.
Kuznetsov
,
Y. A.
,
Elements of Applied Bifurcation Theory
(
Springer
,
1998
).
27.
Lamantia
,
F.
,
Negriu
,
A.
, and
Tuinstra
,
J.
, “
Evolutionary cournot competition with endogenous technology choice:(In) stability and optimal policy
,” CeNDEF Working Paper (
2016
).
28.
Lamantia
,
F.
,
Pezzino
,
M.
, and
Tramontana
,
F.
, “
Dynamic analysis of discontinuous best response with innovation
,”
J. Econ. Dyn. Control
(in press
2018
).
29.
Lamantia
,
F.
and
Radi
,
D.
, “
Exploitation of renewable resources with differentiated technologies: An evolutionary analysis
,”
Math. Comput. Simul.
108
,
155
174
(
2015
).
30.
Nelson
,
R. R.
and
Winter
,
S. G.
,
An Evolutionary Theory of Economic Change
(
Harvard University Press
,
1989
).
31.
Nusse
,
H. E.
and
Yorke
,
J. A.
, “
Border-collision bifurcations for piecewise smooth one-dimensional maps
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
5
,
189
207
(
1995
).
32.
Okuguchi
,
K.
, “
Adaptive expectations in an oligopoly model
,”
Rev. Econ. Stud.
37
,
233
237
(
1970
).
33.
Puu
,
T.
, “
Chaos in duopoly pricing
,”
Chaos, Solitons Fractals
1
,
573
581
(
1991
).
34.
Radi
,
D.
, “
Walrasian versus Cournot behavior in an oligopoly of bounded rational firms
,”
J. Evol. Econ.
27
,
933
961
(
2017
).
35.
Radi
,
D.
,
Gardini
,
L.
, and
Avrutin
,
V.
, “
The role of constraints in a segregation model: The symmetric case
,”
Chaos, Solitons Fractals
66
,
103
119
(
2014
).
36.
Rand
,
D.
, “
Exotic phenomena in games and duopoly models
,”
J. Math. Econ.
5
,
173
184
(
1978
).
37.
Schaffer
,
M. E.
, “
Are profit-maximisers the best survivors?: A Darwinian model of economic natural selection
,”
J. Econ. Behav. Organ.
12
,
29
45
(
1989
).
38.
Sushko
,
I.
,
Avrutin
,
V.
, and
Gardini
,
L.
, “
Bifurcation structure in the skew tent map and its application as a border collision normal form
,”
J. Differ. Equations Appl.
22
,
1040
1087
(
2016a
).
39.
Sushko
,
I.
,
Gardini
,
L.
, and
Avrutin
,
V.
, “
Nonsmooth one-dimensional maps: Some basic concepts and definitions
,”
J. Differ. Equations Appl.
22
,
1816
1870
(
2016b
).
40.
Taylor
,
P.
and
Jonker
,
L.
, “
Evolutionarily stable strategies and game dynamics
,”
Math. Biosci.
40
,
145
156
(
1978
).
41.
Vega-Redondo
,
F.
, “
The evolution of Walrasian behavior
,”
Econometrica: J. Econ. Soc.
65
,
375
384
(
1997
).
42.
Vriend
,
N. J.
, “
An illustration of the essential difference between individual and social learning, and its consequences for computational analyses
,”
J. Econ. Dyn. Control
24
,
1
19
(
2000
).
43.
Weibull
,
J.
,
Evolutionary Game Theory
(
MIT Press
,
Cambridge, MA
,
1997
).
You do not currently have access to this content.