The choice of time as a discrete or continuous variable may radically affect equilibrium stability in an endogenous growth model with durable consumption. In the continuous-time Ramsey model [F. P. Ramsey, Econ. J. 38(152), 543–559 (1928)], the steady state is locally saddle-path stable with monotonic convergence. However, in the discrete-time version, the steady state may be unstable or saddle-path stable with monotonic or oscillatory convergence or periodic solutions [see R.-A. Dana et al., Handbook on Optimal Growth 1 (Springer, 2006) and G. Sorger, Working Paper No. 1505 (2015)]. When this occurs, the discrete-time counterpart of the continuous-time model is not consistent with the initial framework. In order to obtain a discrete-time Ramsey model preserving the main properties of the continuous-time counterpart, we use a general backward and forward discretisation as initially proposed by Bosi and Ragot [Theor. Econ. Lett. 2(1), 10–15 (2012)]. The main result of the study here presented is that, with this hybrid discretisation method, fixed points and local dynamics do not change. For what it concerns global dynamics, i.e., long-run behavior for initial conditions taken on the state space, we mainly perform numerical analysis with the main scope of comparing both qualitative and quantitative evolution of the two systems, also varying some parameters of interest.

1.
D.
Acemoglu
,
Introduction to Modern Economic Growth
(
Princeton University Press
,
2009
).
2.
H.
Al.-Kahby
,
F.
Dannan
, and
S.
Elaydi
, “
A non-standard discretization methods for same biological models
,” in
Applications of Nonstandard Finite Difference Schem
, edited by
R. E.
Mickens
(
Word Scientific
,
2000
).
3.
R.
Barro
and
X.
Sala-i-Martin
,
Determinants of the Economic Growth: A Croos Country Empirical Study
(
MIT Press
,
1997
).
4.
R. J.
Barro
and
X.
Sala-i-Martin
,
Growth Models with Exogenous Saving Rates. Economic Growth
, 2nd ed. (
McGraw-Hill
,
New York
,
2004
), pp.
23
84
.
5.
J.
Benhabib
and
M. M.
Spiegel
, “
The role of human capital in economic development. Evidence from aggregate cross-country data
,”
J. Monetary Econ.
34
,
143
173
(
1994
).
6.
R. J. H.
Beverton
and
S. J.
Holt
,
On the Dynamics of Exploited Fish Populations
, Fishery Investigations Series II, Vol
XIX
(
Ministry of Agriculture, Fisheries and Food
,
1957
).
7.
K.
Borissov
and
R. S.
Dubey
, “
A characterization of Ramsey equilibrium in a model with limited borrowing
,”
J. Math. Econ.
56
,
67
78
(
2015
).
8.
S.
Bosi
and
L.
Ragot
, “
Time representation in economics
,” in
The Economics of Adjustment and Growth
, 2nd ed. (
2012
), pp.
10
15
.
9.
S.
Bosi
and
L.
Ragot
, “
Time representation in economics
,”
Theor. Econ. Lett.
2
(
1
),
10
15
(
2012
).
10.
S.
Brianzoni
,
C.
Mammana
, and
E.
Michetti
, “
Complex dynamics in the neoclassical growth model with differential savings and non-constant labor force growth
,”
Stud. Nonlinear Dyn. Econometrics
11
(
3
), Article
3
(
2007
).
11.
D.
Cass
, “
Optimum growth in an aggregative model of capital accumulation
,”
Rev. Econ. Stud.
32
,
233
240
(
1965
).
12.
R.-A.
Dana
,
C.
Van
,
T.
Mitra
, and
K.
Nishimura
,
Handbook on Optimal Growth 1
(
Springer
,
2006
).
13.
R. H.
Day
, “
Irregular growth cycles
,”
Am. Econ. Rev.
72
,
406
414
(
1982
).
14.
L.
Fanti
and
L.
Gori
, “
Population and neoclassical economic growth: A new child policy perspective
,”
Econ. Lett.
104
(
1
),
27
30
(
2009
).
15.
L.
Gardini
and
F.
Tramontana
, “
Border collision bifurcations in 1D PWL map with one discontinuity and negative jump: Use of the first return map
,”
Int. J. Bifurcation Chaos
20
(
11
),
3529
3547
(
2010
).
16.
R. M.
Goodwin
, “
A growth cycle
,” in
Socialism, Capitalism, and Economic Growth. Essays Presented to Maurice Dobb
, edited by
C. H.
Feldstein
(
Cambridge
,
UK
,
1967
).
17.
L.
Gori
and
M.
Sodini
, “
Local and global bifurcations in an economic growth model with endogenous labour supply and multiplicative external habits
,”
Chaos
24
(
1
),
013122
(
2014
).
18.
L.
Guerrini
, “
A closed-form solution to the Ramsey model with logistic population growth
,”
Econ. Modell.
27
,
1178
1182
(
2010
).
19.
L.
Guerrini
and
M.
Sodini
, “
Nonlinear dynamics in the solow model with bounded population growth and time-to-build technology
,”
Abstr. Appl. Anal.
2013
, Article 836537 pp.
6
(
2013
).
20.
M.
Guzowska
, “
Non-standard method of discretization on the example of Haavelmo Growth Cycle Model
,”
Folia Oecon. Stetinensia
7
(
1
),
45
55
(
2008
).
21.
M.
Guzowska
, “
Non-standard method of discretization on the example of Goodwin's Growth Cycle Model
,”
Polish J. Environ. Stud.
18
(
5B
), (
2009
).
22.
T.
Haavelmo
,
A Study in the Theory of Economic Evolution
(
North-Holland
,
Amsterdam
,
1954
).
23.
W.
Kahan
,
Unconventional Numerical Methods for Trajectory Calculations
, Lecture Notes (
University of California Berkley
,
Berkeley
,
1993
).
24.
T. C.
Koopmans
, “
On the concept of optimal economic growth
,”
The Econometric Approach to Development Planning
(
North-Holland
,
Amsterdam
,
1965
).
25.
P.
Liu
and
S.
Elaydi
, “
Discrete competitive and cooperative models of Lotka-Volterra type
,”
J. Comput. Anal. Appl.
3
(
1
),
53
73
(
2001
).
26.
R.
Lucas
, “
On the mechanics of economic development
,”
J. Monetary Econ.
22
,
3
42
(
1988
).
27.
R. M.
May
, “
Biological populations with nonoverlapping generations: Stable point, stable cycles, and chaos
,”
Science
186
,
645
647
(
1974
).
28.
R. E.
Mickens
,
Nonstandard Finite Difference Methods of Differential Equations
(
World Scientific
,
1994
).
29.
R. E.
Mickens
,
Applications of Nonstandard Finite Difference Schemes
(
Word Scientific
,
2000
).
30.
R. E.
Mickens
, “
A nonstandard finite-difference scheme for the Lotka-Voltera system
,”
Appl. Numer. Math.
45
,
309
314
(
2003
).
31.
H. E.
Nusse
and
C. H.
Hommes
, “
Resolution of chaos with application to a modified Samuelson model
,”
J. Econ. Dyn. Control
14
,
1
19
(
1990
).
32.
M. J.
Pohjola
, “
Stable and chaotic growth: The dynamics of a discrete version of Goodwin's growth cycle model
,”
Z. Nationalökonomie
41
,
27
38
(
1981
).
33.
F. P.
Ramsey
, “
A mathematical theory of saving
,”
Econ. J.
38
(
152
),
543
559
(
1928
).
34.
L. W.
Roeger
, “
Local stability of Euler's and Kahan's methods
,”
J. Differ. Equations Appl.
10
(
6
),
601
614
(
2006
).
35.
P. A.
Samuelson
, “
Interactions between the multiplier analysis and principle of acceleration
,”
Rev. Econ. Stat.
21
,
75
78
(
1939
).
36.
R.
Solow
, “
A contribution to the theory of economic growth
,”
Q. J. Econ.
70
(
1
),
65
94
(
1956
).
37.
S.
Sordi
,
Nonlinear Models of the Business Cycle and Chaos Theory: A Critical Analysis
(
Quaderni del Dipartimento di Economia Politica
,
1993
), p.
153
.
38.
G.
Sorger
, “
Cycles and chaos in the one-sector growth model with elastic labor supply
,” Working Paper No 1505,
2015
.
39.
M. J.
Stutzer
, “
Chaotic dynamics and bifurcation in a macro model
,”
J. Econ. Dyn. Control
2
,
353
376
(
1980
).
40.
I.
Sushko
,
A.
Agliari
, and
L.
Gardini
, “
Bifurcation structure of parameter plane for a family of unimodal piecewise smooth maps: Border-collision bifurcation curves
,”
Chaos, Solitons Fractals
29
(
3
),
756
770
(
2006
).
You do not currently have access to this content.