An important aspect of the recently introduced transient uncoupling scheme is that it induces synchronization for large values of coupling strength at which the coupled chaotic systems resist synchronization when continuously coupled. However, why this is so is an open problem? To answer this question, we recall the conventional wisdom that the eigenvalues of the Jacobian of the transverse dynamics measure whether a trajectory at a phase point is locally contracting or diverging with respect to another nearby trajectory. Subsequently, we go on to highlight a lesser appreciated fact that even when, under the corresponding linearised flow, the nearby trajectory asymptotically diverges away, its distance from the reference trajectory may still be contracting for some intermediate period. We term this phenomenon transient decay in line with the phenomenon of the transient growth. Using these facts, we show that an optimal coupling region, i.e., a region of the phase space where coupling is on, should ideally be such that at any of the constituent phase point either the maximum of the real parts of the eigenvalues is negative or the magnitude of the positive maximum is lesser than that of the negative minimum. We also invent and employ a modified dynamics coupling scheme—a significant improvement over the well-known dynamic coupling scheme—as a decisive tool to justify our results.

1.
N.
Porat-Shliom
,
Y.
Chen
,
M.
Tora
,
A.
Shitara
,
A.
Masedunskas
, and
R.
Weigert
, “
In vivo tissue-wide synchronization of mitochondrial metabolic oscillations
,”
Cell Rep.
9
,
514
521
(
2014
).
2.
B.
Blasius
,
A.
Huppert
, and
L.
Stone
, “
Complex dynamics and phase synchronization in spatially extended ecological systems
,”
Nature
399
,
354
(
1999
).
3.
T.
Yamada
and
H.
Fujisaka
, “
Stability theory of synchronized motion in coupled-oscillator systems. II: The mapping approach
,”
Prog. Theor. Phys.
70
,
1240
(
1983
).
4.
V.
Afraimovich
,
N.
Verichev
, and
M. I.
Rabinovich
, “
Stochastic synchronization of oscillation in dissipative systems
,”
Radiophys. Quantum Electron.
29
,
795
803
(
1986
).
5.
L. M.
Pecora
and
T. L.
Carroll
, “
Synchronization in chaotic systems
,”
Phys. Rev. Lett.
64
,
821
(
1990
).
6.
L. M.
Pecora
and
T. L.
Carroll
, “
Driving systems with chaotic signals
,”
Phys. Rev. A
44
,
2374
(
1991
).
7.
N. F.
Rulkov
,
M. M.
Sushchik
,
L. S.
Tsimring
, and
H. D. I.
Abarbanel
, “
Generalized synchronization of chaos in directionally coupled chaotic systems
,”
Phys. Rev. E
51
,
980
(
1995
).
8.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
, “
Phase synchronization of chaotic oscillators
,”
Phys. Rev. Lett.
76
,
1804
(
1996
).
9.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization
(
Cambridge University Press
,
New York
,
2001
).
10.
L. M.
Pecora
,
T. L.
Carroll
,
G. A.
Johnson
,
D. J.
Mar
, and
J. F.
Heagy
, “
Fundamentals of synchronization in chaotic systems, concepts, and applications
,”
Chaos
7
,
520
(
1997
).
11.
M.
Schröder
,
S.
Chakraborty
,
D.
Witthaut
,
J.
Nagler
, and
M.
Timme
, “
Interaction control to synchronize non-synchronizable networks
,”
Sci. Rep.
6
,
37142
(
2016
).
12.
R. E.
Amritkar
and
N.
Gupte
, “
Synchronization of chaotic orbits: The effect of a finite time step
,”
Phys. Rev. E
47
,
3889
(
1993
).
13.
L.
Chen
,
C.
Qiu
, and
H. B.
Huang
, “
Synchronization with on-off coupling: Role of time scales in network dynamics
,”
Phys. Rev. E
79
,
045101
(
2009
).
14.
L.
Junge
and
U.
Parlitz
, “
Synchronization using dynamic coupling
,”
Phys. Rev. E
64
,
055204
(
2001
).
15.
M.
Schröder
,
M.
Mannattil
,
D.
Dutta
,
S.
Chakraborty
, and
M.
Timme
, “
Transient uncoupling induces synchronization
,”
Phys. Rev. Lett.
115
,
054101
(
2015
).
16.
T.
Stojanovski
,
L.
Kocarev
,
U.
Parlitz
, and
R.
Harris
, “
Sporadic driving of dynamical systems
,”
Phys. Rev. E
55
,
4035
4048
(
1997
).
17.
T.
Stojanovski
,
L.
Kocarev
, and
U.
Parlitz
, “
Driving and synchronizing by chaotic impulses
,”
Phys. Rev. E
54
,
2128
2131
(
1996
).
18.
A.
Tandon
,
M.
Schröder
,
M.
Mannattil
,
M.
Timme
, and
S.
Chakraborty
, “
Synchronizing noisy nonidentical oscillators by transient uncoupling
,”
Chaos
26
,
094817
(
2016
).
19.
M.
Porfiri
and
R.
Pigliacampo
, “
Master-slave global stochastic synchronization of chaotic oscillators
,”
SIAM J. Appl. Dyn. Syst.
7
,
825
842
(
2008
).
20.
M.
Hasler
,
V.
Belykh
, and
I.
Belykh
, “
Dynamics of stochastically blinking systems. Part I: Finite time properties
,”
SIAM J. Appl. Dyn. Syst.
12
,
1007
1030
(
2013
).
21.
M.
Hasler
,
V.
Belykh
, and
I.
Belykh
, “
Dynamics of stochastically blinking systems. Part II: Asymptotic properties
,”
SIAM J. Appl. Dyn. Syst.
12
,
1031
1084
(
2013
).
22.
R.
Jeter
and
I.
Belykh
, “
Synchronization in on-off stochastic networks: Windows of opportunity
,”
IEEE Trans. Circuits Syst. I
62
,
1260
(
2015
).
23.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
,
397
(
1976
).
24.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
(
1963
).
25.
G.
Chen
and
T.
Ueta
, “
Yet another chaotic attractor
,”
Int. J. Bifurcation Chaos
09
,
1465
1466
(
1999
).
26.
R.
Bale
and
R.
Govindarajan
, “
Transient growth and why we should care about it
,”
Resonance
15
,
441
457
(
2010
).
27.
O.
Rossler
, “
An equation for hyperchaos
,”
Phys. Lett. A
71
,
155
157
(
1979
).
28.
L.
Chen
,
C.
Qiu
,
H. B.
Huang
,
G. X.
Qi
, and
H. J.
Wang
, “
Facilitated synchronization of complex networks through a discontinuous coupling strategy
,”
Eur. Phys. J. B
76
,
625
635
(
2010
).
29.
H. D. I.
Abarbanel
,
R.
Brown
, and
M. B.
Kennel
, “
Variation of Lyapunov exponents on a strange attractor
,”
J. Nonlinear Sci.
1
,
175
(
1991
).
30.
B.
Eckhardt
and
D.
Yao
, “
Local Lyapunov exponents in chaotic systems
,”
Physica D
65
,
100
(
1993
).
31.
R.
Doerner
,
B.
Hübinger
,
W.
Martienssen
,
S.
Grossmann
, and
S.
Thomae
, “
Predictability portraits for chaotic motions
,”
Chaos, Solitons Fractals
1
,
553
(
1991
).
32.
G. A.
Johnson
,
D. J.
Mar
,
T. L.
Carroll
, and
L. M.
Pecora
, “
Synchronization and imposed bifurcations in the presence of large parameter mismatch
,”
Phys. Rev. Lett.
80
,
3956
(
1998
).
33.
H. D. I.
Abarbanel
,
R.
Brown
, and
M. B.
Kennel
, “
Local Lyapunov exponents computed from observed data
,”
J. Nonlinear Sci.
2
,
343
365
(
1992
).
34.
N. J.
Corron
, “
Loss of synchronization in coupled oscillators with ubiquitous local stability
,”
Phys. Rev. E
63
,
055203
(
2001
).
35.
H.
Fujisaka
and
T.
Yamada
, “
Stability theory of synchronized motion in coupled-oscillator systems
,”
Prog. Theor. Phys.
69
,
32
47
(
1983
).
You do not currently have access to this content.