We consider chimera states in a one-dimensional medium of nonlinear nonlocally coupled phase oscillators. In terms of a local coarse-grained complex order parameter, the problem of finding stationary rotating nonhomogeneous solutions reduces to a third-order ordinary differential equation. This allows finding chimera-type and other inhomogeneous states as periodic orbits of this equation. Stability calculations reveal that only some of these states are stable. We demonstrate that an oscillatory instability leads to a breathing chimera, for which the synchronous domain splits into subdomains with different mean frequencies. Further development of instability leads to turbulent chimeras.

1.
Y.
Kuramoto
and
D.
Battogtokh
, “
Coexistence of coherence and incoherence in nonlocally coupled phase oscillators
,”
Nonlinear Phenom. Complex Syst.
5
,
380
385
(
2002
).
2.
M. J.
Panaggio
and
D. M.
Abrams
, “
Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators
,”
Nonlinearity
28
,
R67
R87
(
2015
).
3.
D. M.
Abrams
and
S. H.
Strogatz
, “
Chimera states for coupled oscillators
,”
Phys. Rev. Lett.
93
,
174102
(
2004
).
4.
S.-I.
Shima
and
Y.
Kuramoto
, “
Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators
,”
Phys. Rev. E
69
,
036213
(
2004
).
5.
C. R.
Laing
, “
The dynamics of chimera states in heterogeneous Kuramoto networks
,”
Phys. D: Nonlinear Phenom.
238
,
1569
1588
(
2009
).
6.
G.
Bordyugov
,
A.
Pikovsky
, and
M.
Rosenblum
, “
Self-emerging and turbulent chimeras in oscillator chains
,”
Phys. Rev. E
82
,
035205
(
2010
).
7.
Y. L.
Maistrenko
,
A.
Vasylenko
,
O.
Sudakov
,
R.
Levchenko
, and
V. L.
Maistrenko
, “
Cascades of multiheaded chimera states for coupled phase oscillators
,”
Int. J. Bifurcation Chaos
24
,
1440014
(
2014
).
8.
D. M.
Abrams
,
R.
Mirollo
,
S. H.
Strogatz
, and
D. A.
Wiley
, “
Solvable model for chimera states of coupled oscillators
,”
Phys. Rev. Lett.
101
,
084103
(
2008
).
9.
A.
Pikovsky
and
M.
Rosenblum
, “
Partially integrable dynamics of hierarchical populations of coupled oscillators
,”
Phys. Rev. Lett.
101
,
264103
(
2008
).
10.
M. R.
Tinsley
,
S.
Nkomo
, and
K.
Showalter
, “
Chimera and phase-cluster states in populations of coupled chemical oscillators
,”
Nat. Phys.
8
,
662
665
(
2012
).
11.
E. A.
Martens
,
S.
Thutupalli
,
A.
Fourrière
, and
O.
Hallatschek
, “
Chimera states in mechanical oscillator networks
,”
Proc, Natl. Acad. Sci.
110
,
10563
10567
(
2013
).
12.
L.
Smirnov
,
G.
Osipov
, and
A.
Pikovsky
, “
Chimera patterns in the Kuramoto-Battogtokh model
,”
J. Phys. A: Math. Theor.
50
,
08LT01
(
2017
).
13.
A. A.
Temirbayev
,
Z. Z.
Zhanabaev
,
S. B.
Tarasov
,
V. I.
Ponomarenko
, and
M.
Rosenblum
, “
Experiments on oscillator ensembles with global nonlinear coupling
,”
Phys. Rev. E
85
,
015204
(
2012
).
14.
A. A.
Temirbayev
,
Y. D.
Nalibayev
,
Z. Z.
Zhanabaev
,
V. I.
Ponomarenko
, and
M.
Rosenblum
, “
Autonomous and forced dynamics of oscillator ensembles with global nonlinear coupling: An experimental study
,”
Phys. Rev. E
87
,
062917
(
2013
).
15.
M. I.
Bolotov
,
L. A.
Smirnov
,
G. V.
Osipov
, and
A.
Pikovsky
, “
Breather chimera states in a system of phase oscillators
,”
JETP Lett.
106
,
393
(
2017
).
16.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
CHAOS
18
,
037113
(
2008
).
17.
M.
Wolfrum
,
O. E.
Omel'chenko
,
S.
Yanchuk
, and
Y. L.
Maistrenko
, “
Spectral properties of chimera states
,”
CHAOS
21
,
013112
(
2011
).
18.
M.
Rosenblum
and
A.
Pikovsky
, “
Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling
,”
Phys. Rev. Lett.
98
,
064101
(
2007
).
19.
A.
Pikovsky
and
M.
Rosenblum
, “
Self-organized partially synchronous dynamics in populations of nonlinearly coupled oscillators
,”
Phys. D
238
(
1
),
27
37
(
2009
).
20.
O. E.
Omel'chenko
, “
Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators
,”
Nonlinearity
26
,
2469
(
2013
).
21.
C.-U.
Choe
,
R.-S.
Kim
, and
J.-S.
Ri
, “
Chimera and modulated drift states in a ring of nonlocally coupled oscillators with heterogeneous phase lags
,”
Phys. Rev. E
96
,
032224
(
2017
).
22.
J.
Xie
,
E.
Knobloch
, and
H.-C.
Kao
, “
Twisted chimera states and multicore spiral chimera states on a two-dimensional torus
,”
Phys. Rev. E
92
,
042921
(
2015
).
23.
M.
Wolfrum
,
S. V.
Gurevich
, and
O. E.
Omelchenko
, “
Turbulence in the Ott - Antonsen equation for arrays of coupled phase oscillators
,”
Nonlinearity
29
,
257
(
2016
).
You do not currently have access to this content.