The controllability analysis of Boolean networks (BNs), as models of biomolecular regulatory networks, has drawn the attention of researchers in recent years. In this paper, we aim at governing the steady-state behavior of BNs using an intervention method which can easily be applied to most real system, which can be modeled as BNs, particularly to biomolecular regulatory networks. To this end, we introduce the concept of attractor controllability of a BN by flipping a subset of its nodes, as the possibility of making a BN converge from any of its attractors to any other one, by one-time flipping members of a subset of BN nodes. Our approach is based on the algebraic state-space representation of BNs using semi-tensor product of matrices. After introducing some new matrix tools, we use them to derive necessary and sufficient conditions for the attractor controllability of BNs. A forward search algorithm is then suggested to identify the minimal perturbation set for attractor controllability of a BN. Next, a lower bound is derived for the cardinality of this set. Two new indices are also proposed for quantifying the attractor controllability of a BN and the influence of each network variable on the attractor controllability of the network and the relationship between them is revealed. Finally, we confirm the efficiency of the proposed approach by applying it to the BN models of some real biomolecular networks.

1.
S. A.
Kauffman
, “
Metabolic stability and epigenesis in randomly constructed genetic nets
,”
J. Theor. Biol.
22
,
437
467
(
1969
).
2.
S. A.
Kauffman
,
The Origins of Order: Self Organization and Selection in Evolution.
(
Oxford University Press
,
USA
,
1993
).
3.
R.
Li
,
M.
Yang
, and
T.
Chu
, “
Controllability and observability of Boolean networks arising from biology
,”
Chaos
25
,
023104
(
2015
).
4.
T.
Akutsu
,
M.
Hayashida
,
W.-K.
Ching
, and
M. K.
Ng
, “
Control of Boolean networks: Hardness results and algorithms for tree structured networks
,”
J. Theor. Biol.
244
,
670
679
(
2007
).
5.
D.
Cheng
, “
Semi-tensor product of matrices and its applications—A survey
,” in
ICCM
(
2007
), Vol.
3
, pp.
641
668
.
6.
D.
Cheng
and
H.
Qi
, “
A linear representation of dynamics of Boolean networks
,”
IEEE Trans. Automat. Control
55
,
2251
2258
(
2010
).
7.
D.
Cheng
,
H.
Qi
, and
Z.
Li
,
Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach
(
Springer
,
2011
).
8.
R.
Li
,
M.
Yang
, and
T.
Chu
, “
Synchronization design of Boolean networks via the semi-tensor product method
,”
IEEE Trans. Neural Networks Learn. Syst.
24
,
996
1001
(
2013
).
9.
J.
Lu
,
J.
Zhong
,
Y.
Tang
,
T.
Huang
,
J.
Cao
, and
J.
Kurths
, “
Synchronization in output-coupled temporal Boolean networks
,”
Sci. Rep.
4
,
6292
(
2014
).
10.
Y.
Liu
,
L.
Sun
,
J.
Lu
, and
J.
Liang
, “
Feedback controller design for the synchronization of Boolean control networks
,”
IEEE Trans. Neural Networks Learn. Syst.
27
,
1991
1996
(
2016
).
11.
D.
Cheng
and
H.
Qi
, “
Controllability and observability of Boolean control networks
,”
Automatica
45
,
1659
1667
(
2009
).
12.
Y.
Zhao
,
H.
Qi
, and
D.
Cheng
, “
Input-state incidence matrix of Boolean control networks and its applications
,”
Syst. Control Lett.
59
,
767
774
(
2010
).
13.
F.
Li
and
J.
Sun
, “
Controllability of Boolean control networks with time delays in states
,”
Automatica
47
,
603
607
(
2011
).
14.
C.
Luo
,
X.
Zhang
,
R.
Shao
, and
Y.
Zheng
, “
Controllability of Boolean networks via input controls under Harvey's update scheme
,”
Chaos
26
,
23111
(
2016
).
15.
K.
Zhang
and
L.
Zhang
, “
Observability of Boolean control networks: A unified approach based on the theories of finite automata and formal languages
,” in
2014 33rd Chinese Control Conference (CCC)
(IEEE,
2014
), pp.
6854
6861
.
16.
F.
Li
,
J.
Sun
, and
Q. D.
Wu
, “
Observability of Boolean control networks with state time delays
,”
IEEE Trans. Neural Networks
22
,
948
954
(
2011
).
17.
D.
Cheng
,
Z.
Li
, and
H.
Qi
, “
Realization of Boolean control networks
,”
Automatica
46
,
62
69
(
2010
).
18.
D.
Cheng
,
Z.
Li
, and
H.
Qi
, “
Canalizing Boolean mapping and its application to disturbance decoupling of Boolean control networks
,”
in 2009 IEEE International Conference Control and Automation (IEEE
,
2009
), pp.
7
12
.
19.
Y.
Liu
,
B.
Li
,
J.
Lu
, and
J.
Cao
, “
Pinning control for the disturbance decoupling problem of Boolean networks
,”
IEEE Trans. Control and Automation
62
,
6595
6601
(
2017
).
20.
Y.
Zou
and
J.
Zhu
, “
System decomposition with respect to inputs for Boolean control networks
,”
Automatica
50
,
1304
1309
(
2014
).
21.
D.
Cheng
,
H.
Qi
,
Z.
Li
, and
J. B.
Liu
, “
Stability and stabilization of Boolean networks
,”
Int. J. Robust Nonlinear Control
21
,
134
156
(
2011
).
22.
H.
Li
,
Y.
Wang
, and
Z.
Liu
, “
Simultaneous stabilization of Boolean control networks via semi-tensor product method
,”
in 2011 30th Chinese Control Conference (CCC)
(
2011
), pp.
6386
6391
.
23.
Y.
Liu
,
J.
Cao
,
L.
Sun
, and
J.
Lu
, “
Sampled-data state feedback stabilization of Boolean control networks
,”
Neural Comput.
28
,
778
799
(
2016
).
24.
Y.
Liu
,
B.
Li
,
H.
Chen
, and
J.
Cao
, “
Function perturbations on singular Boolean networks
,”
Automatica
84
,
36
42
(
2017
).
25.
A. J.
Gates
and
L. M.
Rocha
, “
Control of complex networks requires both structure and dynamics
,”
Sci. Rep.
6
,
24456
(
2016
).
26.
F.
Li
and
J.
Sun
, “
Controllability and optimal control of a temporal Boolean network
,”
Neural Networks
34
,
10
17
(
2012
).
27.
D.
Laschov
and
M.
Margaliot
, “
Controllability of Boolean control networks via the Perron–Frobenius theory
,”
Automatica
48
,
1218
1223
(
2012
).
28.
Z.
Li
and
J.
Song
, “
Controllability of Boolean control networks avoiding states set
,”
Sci. China Inf. Sci.
57
,
1
13
(
2014
).
29.
Y.
Liu
,
H.
Chen
, and
B.
Wu
, “
Controllability of Boolean control networks with impulsive effects and forbidden states
,”
Math. Methods Appl. Sci.
37
,
1
9
(
2014
).
30.
H.
Chen
,
J.
Liang
, and
F.
Wang
, “
Controllability of Boolean control networks with respect to part of the variables
,”
in 27th Chinese Control Decision Conference (2015 CCDC)
(
2015
), pp.
699
704
.
31.
J.
Lu
,
J.
Zhong
,
C.
Huang
, and
J.
Cao
, “
On pinning controllability of Boolean control networks
,”
IEEE Trans. Autom. Control
61
,
1658
1663
(
2016
).
32.
H.
Chen
,
J.
Liang
, and
Z.
Wang
, “
Pinning controllability of autonomous Boolean control networks
,”
Sci. China Inf. Sci.
59
,
070107
(
2016
).
33.
A. S.
Jarrah
,
R.
Laubenbacher
, and
A.
Veliz-Cuba
, “
The dynamics of conjunctive and disjunctive Boolean network models
,”
Bull. Math. Biol.
72
,
1425
1447
(
2010
).
34.
J.
Kim
,
S.-M.
Park
, and
K.-H.
Cho
, “
Discovery of a kernel for controlling biomolecular regulatory networks
,”
Sci. Rep.
3
,
2223
(
2013
).
35.
A.
Veliz-Cuba
, “
Reduction of Boolean network models
,”
J. Theor. Biol.
289
,
167
172
(
2011
).
36.
A.
Naldi
,
E.
Remy
,
D.
Thieffry
, and
C.
Chaouiya
, “
Dynamically consistent reduction of logical regulatory graphs
,”
Theor. Comput. Sci.
412
,
2207
2218
(
2011
).
37.
I.
Shmulevich
and
E. R.
Dougherty
, “
External control
,” in
Probabilistic Boolean Networks: The Modeling and Control of Gene Regulatory Networks
(
SIAM
,
2010
), Chap. 5.
38.
M. R.
Rafimanzelat
and
F.
Bahrami
, “
Attractor stabilizability of Boolean networks with application to biomolecular regulatory networks
,”
IEEE Trans. Control Network Syst.
(
2018
).
39.
S.
Huang
,
G.
Eichler
,
Y.
Bar-Yam
, and
D. E.
Ingber
, “
Cell fates as high-dimensional attractor states of a complex gene regulatory network
,”
Phys. Rev. Lett.
94
,
128701
(
2005
).
40.
G. F.
Deleavey
and
M. J.
Damha
, “
Designing chemically modified oligonucleotides for targeted gene silencing
,”
Chem. Biol.
19
,
937
954
(
2012
).
41.
J. K.
Watts
and
D. R.
Corey
, “
Silencing disease genes in the laboratory and the clinic
,”
J. Pathol.
226
,
365
379
(
2012
).
42.
A. W.
Cheng
 et al., “
Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system
,”
Cell Res.
23
,
1163
1171
(
2013
).
43.
M.
Boettcher
and
M. T.
McManus
, “
Choosing the right tool for the job: RNAi, TALEN, or CRISPR
,”
Mol. Cell
58
,
575
585
(
2015
).
44.
F.
Li
,
T.
Long
,
Y.
Lu
,
Q.
Ouyang
, and
C.
Tang
, “
The yeast cell-cycle network is robustly designed
,”
Proc. Natl. Acad. Sci. U. S. A.
101
,
4781
4786
(
2004
).
45.
C. E.
Giacomantonio
and
G. J.
Goodhill
, “
A Boolean model of the gene regulatory network underlying Mammalian cortical area development
,”
PLoS Comput. Biol.
6
,
13
(
2010
).
46.
J.
Krumsiek
,
C.
Marr
,
T.
Schroeder
, and
F. J.
Theis
, “
Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network
,”
PLoS One
6
,
e22649
(
2011
).
47.
A.
Abdi
,
M. B.
Tahoori
, and
E. S.
Emamian
, “
Fault diagnosis engineering of digital circuits can identify vulnerable molecules in complex cellular pathways
,”
Sci. Signaling
1
,
ra10
(
2008
).
You do not currently have access to this content.