We present a dynamical observer for two dimensional partial differential equation models describing excitable media, where the required cross prediction from observed time series to not measured state variables is provided by Echo State Networks receiving input from local regions in space, only. The efficacy of this approach is demonstrated for (noisy) data from a (cubic) Barkley model and the Bueno-Orovio-Cherry-Fenton model describing chaotic electrical wave propagation in cardiac tissue.

1.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
,
436
444
(
2015
).
2.
G.
Mesnil
,
X.
He
,
L.
Deng
, and
Y.
Bengio
, “
Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding
,” in
Interspeech
(
2013
), pp.
3771
3775
.
3.
R.
Pascanu
,
T.
Mikolov
, and
Y.
Bengio
, “
On the difficulty of training recurrent neural networks
,” in
Proceedings of the 30th International Conference on Machine Learning
(
2013
), p.
28
.
4.
H.
Jaeger
, “
A tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the ‘echo state network’ approach
,”
GMD Rep.
159
,
48
(
2002
).
5.
H.
Jaeger
, “
The ‘echo state’ approach to analysing and training recurrent neural networks - With an erratum note
,”
GMD Report 148
, GMD, German National Research Institute for Computer Science (2001).
6.
W.
Maass
,
T.
Natschläger
, and
H.
Markram
, “
Realtime computing without stable states: A new frame work for neural computation based on perturbations
,”
Neural Comput.
14
,
2531
2560
(
2002
).
7.
W.
Maass
, “
Liquid state machines: Motivation, theory, and applications
,” in
Computability in Context
(
Imperial College Press
,
2011
), pp.
275
296
.
8.
D.
Verstraeten
,
B.
Schrauwen
,
M.
D'Haene
, and
D.
Stroobandt
, “
An experimental unification of reservoir computing methods
,”
Neural Networks
20
,
391
403
(
2007
).
9.
H.
Jaeger
and
H.
Haas
, “
Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless telecommunication
,”
Science
304
,
78
80
(
2004
).
10.
M.
Lukoševičius
and
H.
Jaeger
, “
Reservoir computing approaches to recurrent neural network training
,”
Comput. Sci. Rev.
3
,
127
149
(
2009
).
11.
L.
Appeltant
,
M. C.
Soriano
,
G.
Van der Sande
,
J.
Danckaert
,
S.
Massar
,
J.
Dambre
,
B.
Schrauwen
,
C. R.
Mirasso
, and
I.
Fischer
, “
Information processing using a single dynamical node as complex system
,”
Nat. Commun.
2
,
468
(
2011
).
12.
P.
Antonik
,
M.
Haelterman
, and
S.
Massar
, “
Brian-inspired photonic signal processor for generating periodic patterns and emulating chaotic systems
,”
Phys. Rev. Appl.
7
,
054014
(
2017
).
13.
V. S.
Afraimovich
,
N. N.
Verichev
, and
M. I.
Rabinovich
, “
Stochastic synchronization of oscillations in dissipative systems
,”
Radiophys. Quantum Electron.
29
,
795
803
(
1986
).
14.
H. D. I.
Abarbanel
,
H. F.
Rulkov
, and
M. M.
Sushchik
, “
Generalized synchronization of chaos: The auxiliary system approach
,”
Phys. Rev. E
53
,
4528
4535
(
1996
).
15.
L.
Kocarev
and
U.
Parlitz
, “
Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems
,”
Phys. Rev. Lett.
76
,
1816
1819
(
1996
).
16.
U.
Parlitz
, “
Detecting generalized synchronization
,”
Nonlinear Theory Appl., IEICE
3
,
113
127
(
2012
).
17.
U.
Parlitz
,
A.
Hornstein
,
D.
Engster
,
F.
Al-Bender
,
V.
Lampaert
,
T.
Tjahjowidodo
,
S. D.
Fassois
,
D.
Rizos
,
C. X.
Wong
,
K.
Worden
, and
G.
Manson
, “
Identification of pre-sliding friction dynamics
,”
Chaos
14
,
420
430
(
2004
).
18.
U.
Parlitz
and
A.
Hornstein
, “
Dynamical prediction of chaotic time series
,”
Chaos Complexity Lett.
1
,
135
144
(
2005
).
19.
A.
Hornstein
, “
Dynamical modeling with application to friction phenomena
,” Ph.D. thesis (Göttingen, Germany,
2005
).
20.
J.
Pathak
,
Z.
Lu
,
B.
Hunt
,
M.
Girvan
, and
E.
Ott
, “
Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
,”
Chaos
27
,
121102
(
2017
).
21.
Z.
Lu
,
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
R.
Brockett
, and
E.
Ott
, “
Reservoir observers: Model-free inference of unmeasured variables in chaotic systems
,”
Chaos
27
,
041102
(
2017
).
22.
U.
Parlitz
and
C.
Merkwirth
, “
Prediction of spatiotemporal time series based on reconstructed local states
,”
Phys. Rev. Lett.
84
,
1890
(
2000
).
23.
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
Z.
Lu
, and
E.
Ott
, “
Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach
,”
Phys. Rev. Lett.
120
,
024102
(
2018
).
24.
B.
Lindner
,
J.
Garcia-Ojalvo
,
A.
Neiman
, and
L.
Schimansky-Geier
, “
Effects of noise in excitable systems
,”
Phys. Rep.
392
,
321
424
(
2004
).
25.
M.
Cross
and
H.
Greenside
,
Pattern Formation and Dynamics in Nonequilibrium Systems
(
Cambridge University Press
,
Cambridge
,
2009
).
26.
A.
Winfree
,
The Geometry of Biological Time
(
Springer
,
New York
,
1980
).
27.
E. M.
Cherry
,
F. H.
Fenton
,
T.
Krogh-Madsen
,
S.
Luther
, and
U.
Parlitz
, “
Introduction to focus issue: Complex cardiac dynamics
,”
Chaos
27
,
093701
(
2017
).
28.
D.
Barkley
, “
A model for fast computer simulation of waves in excitable media
,”
Physica D
49
,
61
70
(
1991
).
29.
D.
Barkley
, “
Barkley model
,”
Scholarpedia
3
,
1877
(
2008
).
30.
A.
Bueno-Orovio
,
E. M.
Cherry
, and
F. H.
Fenton
, “
Minimal model for human ventricular action potentials in tissue
,”
J. Theor. Biol.
253
,
544
560
(
2008
).
31.
K.
Ten Tusscher
,
D.
Noble
,
P.
Noble
, and
A. V.
Panfilov
, “
A model for human ventricular tissue
,”
Am. J. Physiol.-Heart Circ. Physiol.
286
,
H1573
H1589
(
2004
).
32.
M. C.
Strain
and
H. S.
Greenside
, “
Size-dependent transition to high-dimensional chaotic dynamics in a two-dimensional excitable medium
,”
Phys. Rev. Lett.
80
,
2306
2309
(
1998
).
33.
T.
Lilienkamp
,
J.
Christoph
, and
U.
Parlitz
, “
Features of chaotic transients in excitable media governed by spiral and scroll waves
,”
Phys. Rev. Lett.
119
,
054101
(
2017
).
34.
G.
Bradski
,
Dr. Dobb's Journal of Software Tools
(2001) Vol. 3, see: https://github.com/opencv/opencv/wiki/CiteOpenCV.
35.
M.
Lukoševičius
, “
A practical guide to applying echo state networks
,” in
Neural Networks: Tricks of the Trade
(
Springer
,
2012
), pp.
659
686
.
36.
H.
Jaeger
,
M.
Lukoševičius
,
D.
Popovici
, and
U.
Siewert
, “
Optimization and applications of echo state networks with leaky-integrator neurons
,”
Neural Networks
20
,
335
352
(
2007
).
37.
J.
Christoph
,
M.
Chebbok
,
C.
Richter
,
J.
Schröder-Schetelig
,
P.
Bittihn
,
S.
Stein
,
I.
Uzelac
,
G.
Hasenfuß
,
F.
Fenton
,
R.
Gilmour Jr.
, and
S.
Luther
, “
Electromechanical Vortex Filaments during Cardiac Fibrillation
,”
Nature
555
,
667
672
(
2018
).
You do not currently have access to this content.