This paper aims to report two novel bursting patterns, the turnover-of-pitchfork-hysteresis-induced bursting and the compound pitchfork-hysteresis bursting, demonstrated for the Duffing system with multiple-frequency parametric excitations. Typically, a hysteresis behavior between the origin and non-zero equilibria of the fast subsystem can be observed due to delayed pitchfork bifurcation. Based on numerical analysis, we show that the stable equilibrium branches, related to the non-zero equilibria resulted from the pitchfork bifurcation, may become the ones with twists and turns. Then, the novel bursting pattern turnover-of-pitchfork-hysteresis-induced bursting is revealed accordingly. In particular, we show that additional pitchfork bifurcation points may appear in the fast subsystem under certain parameter conditions. This creates multiple delay-induced hysteresis behavior and helps us to reveal the other novel bursting pattern, the compound pitchfork-hysteresis bursting. Besides, effects of parameters on the bursting patterns are studied to explore the relation of these two novel bursting patterns.

1.
M.
Desroches
,
J.
Guckenheimer
,
B.
Krauskopf
,
C.
Kuehn
,
H. M.
Osinga
, and
M.
Wechselberger
,
SIAM Rev.
54
,
211
(
2012
).
2.
J. Y.
Hou
,
X. H.
Li
, and
J. F.
Chen
,
J. Vibroeng.
18
,
4812
(
2016
).
3.
A.
Vidal
,
Lect. Notes Control Inf. Sci.
341
,
439
(
2006
).
4.
G. V.
Savino
and
C. M.
Formigli
,
Biosystems
97
,
9
(
2009
).
5.
E. M.
Izhikevich
,
IEEE Trans. Neural Networks
14
,
1569
(
2003
).
6.
S.
Liepelt
,
J. A.
Freund
,
L.
Schimansky-Geier
,
A.
Neiman
, and
D. F.
Russell
,
J. Theor. Biol.
237
,
30
(
2005
).
7.
Q. S.
Lu
,
H. G.
Gu
,
Z. Q.
Yang
,
X.
Shi
,
L. X.
Duan
, and
Y. H.
Zheng
,
Acta Mech. Sin.
24
,
593
(
2008
).
8.
A. N.
Pisarchika
and
U.
Feudel
,
Phys. Rep.
540
,
167
(
2014
).
9.
M.
Krupa
,
A.
Vidal
,
M.
Desroches
, and
F.
Clément
,
SIAM J. Appl. Dyn. Syst.
11
,
1458
(
2012
).
11.
O. V.
Maslennikov
and
V. I.
Nekorkin
,
Chaos
23
,
023129
(
2013
).
12.
X. J.
Han
,
F. B.
Xia
,
C.
Zhang
, and
Y.
Yu
,
Nonlinear Dyn.
88
,
2693
(
2017
).
13.
C.
Kuehn
,
Multiple Time Scale Dynamics
(
Springer
,
Berlin
,
2015
).
14.
E. M.
Izhikevich
,
Int. J. Bifurcation Chaos
10
,
1171
(
2000
).
15.
H.
Simo
and
P.
Woafo
,
Mech. Res. Commun.
38
,
537
(
2011
).
16.
X. H.
Li
and
J. Y.
Hou
,
Int. J. Nonlinear Mech.
81
,
165
(
2016
).
17.
Z.
Rakaric
and
I.
Kovacic
,
Mech. Syst. Signal Process.
81
,
35
(
2016
).
18.
X. J.
Han
and
Q. S.
Bi
,
Commun. Nonlinear Sci. Numer. Simul.
16
,
4146
(
2011
).
19.
M.
Golubitsky
,
K.
Josic
, and
T. J.
Kaper
, in
Global Analysis of Dynamical Systems: Festschrift Dedicated to Floris Takens on the Occasion of his 60th Birthday
, edited by
H. W.
Broer
,
B.
Krauskopf
, and
G.
Vegter
(
Institute of Physics
,
Bristol
,
2001
), pp.
277
308
.
20.
H. M.
Osinga
,
A.
Sherman
, and
K.
Tsaneva-Atanasovac
,
Discrete Contin. Dyn. Syst. Ser. A
32
,
2853
(
2012
).
21.
M. L.
Saggio
,
A.
Spiegler
,
C.
Bernard
, and
V. K.
Jirsa
,
J. Math. Neurosci.
7
,
7
(
2017
).
22.
X. J.
Han
,
Q. S.
Bi
,
P.
Ji
, and
J.
Kurths
,
Phys. Rev. E
92
,
012911
(
2015
).
23.
X. J.
Han
,
Y.
Yu
,
C.
Zhang
,
F. B.
Xia
, and
Q. S.
Bi
,
Int. J. Nonlinear Mech.
89
,
69
(
2017
).
24.
G. J. M.
Maree
,
SIAM J. Appl. Math.
56
,
889
(
1996
).
25.
N.
Berglund
and
H.
Kunz
,
Phys. Rev. Lett.
78
,
1691
(
1997
).
26.
X. J.
Han
,
Q. S.
Bi
,
C.
Zhang
, and
Y.
Yu
,
Int. J. Bifurcation Chaos
24
,
1450098
(
2014
).
27.
X. J.
Han
and
Q. S.
Bi
,
Sci. China Technol. Sci.
55
,
702
(
2012
).
28.
L. X.
Duan
,
Q. S.
Lu
, and
Q. Y.
Wang
,
Neurocomputing
72
,
341
(
2008
).
29.
Q. S.
Lu
,
Z. Q.
Yang
,
L. X.
Duan
,
H. G.
Gu
, and
W.
Ren
,
Chaos Solitons Fractals
40
,
577
(
2009
).
30.
B.
Ibarz
,
J. M.
Casado
, and
M. A. F.
Sanjuán
,
Phys. Rep.
501
,
1
(
2011
).
31.
O. V.
Maslennikov
and
V. I.
Nekorkin
,
Chaos
26
,
073104
(
2016
).
32.
X. J.
Han
,
Y.
Yu
, and
C.
Zhang
,
Nonlinear Dyn.
88
,
2889
(
2017
).
33.
J. C.
Butcher
,
Numerical Methods for Ordinary Differential Equations
(
Wiley
,
New York
,
2008
).
34.
E.
Jakobsson
and
R.
Guttman
, “
Continuous stimulation and threshold of axons: The other legacy of Kenneth Cole
,” in
The Biophysical Approach to Excitable Systems
, edited by
W. J.
Adelman
and
D. E.
Goldman
(
Plenum
,
New York
,
1981
), pp.
197
211
.
35.
J. Z.
Su
, “
The phenomenon of delayed bifurcation and its analyses
,” in
Multiple-Time-Scale Dynamical Systems
, edited by
C. K. R. T.
Jones
and
A. I.
Khibnik
(
Springer
,
New York
,
2001
), pp.
203
214
.
You do not currently have access to this content.