In the field of complex networks, how to identify influential nodes is a significant issue in analyzing the structure of a network. In the existing method proposed to identify influential nodes based on the local dimension, the global structure information in complex networks is not taken into consideration. In this paper, a node information dimension is proposed by synthesizing the local dimensions at different topological distance scales. A case study of the Netscience network is used to illustrate the efficiency and practicability of the proposed method.

1.
Z.
Wang
,
M. A.
Andrews
,
Z.-X.
Wu
,
L.
Wang
, and
C. T.
Bauch
, “
Coupled disease–behavior dynamics on complex networks: A review
,”
Phys. Life Rev.
15
,
1
29
(
2015
).
2.
A.-L.
Barabási
,
N.
Gulbahce
, and
J.
Loscalzo
, “
Network medicine: A network-based approach to human disease
,”
Nat. Rev. Genet.
12
,
56
68
(
2011
).
3.
J.
Borge-Holthoefer
and
Y.
Moreno
, “
Absence of influential spreaders in rumor dynamics
,”
Phys. Rev. E
85
,
026116
(
2012
).
4.
F.
Xiao
,
C.
Zhan
,
H.
Lai
,
L.
Tao
, and
Z.
Qu
, “
New parallel processing strategies in complex event processing systems with data streams
,”
Int. J. Distrib. Sens. Networks
13
,
1–15
(
2017
).
5.
H.
Zheng
and
Y.
Deng
, “
Evaluation method based on fuzzy relations between Dempster-Shafer belief structure
,”
Int. J. Intell. Syst.
(
2017
).
6.
F.
Xiao
,
M.
Aritsugi
,
Q.
Wang
, and
R.
Zhang
, “
Efficient processing of multiple nested event pattern queries over multi-dimensional event streams based on a triaxial hierarchical model
,”
Artif. Intell. Med.
72
,
56
71
(
2016
).
7.
X.
Zhang
,
J.
Zhu
,
Q.
Wang
, and
H.
Zhao
, “
Identifying influential nodes in complex networks with community structure
,”
Knowl.-Based Syst.
42
,
74
84
(
2013
).
8.
T.
Liu
,
Y.
Deng
, and
F.
Chan
, “
Evidential supplier selection based on DEMATEL and game theory
,”
Int. J. Fuzzy Syst.
20
,
1321
1333
(
2018
).
9.
X.
Zheng
and
Y.
Deng
, “
Dependence assessment in human reliability analysis based on evidence credibility decay model and IOWA operator
,”
Ann. Nucl. Energy
112
,
673
684
(
2018
).
10.
Z.
Wang
,
C.-Y.
Xia
,
S.
Meloni
,
C.-S.
Zhou
, and
Y.
Moreno
, “
Impact of social punishment on cooperative behavior in complex networks
,”
Sci. Rep.
3
,
3055
(
2013
).
11.
L. C.
Freeman
, “
Centrality in social networks conceptual clarification
,”
Soc. Networks
1
,
215
239
(
1978
).
12.
P.
Bonacich
and
P.
Lloyd
, “
Eigenvector-like measures of centrality for asymmetric relations
,”
Soc. Networks
23
,
191
201
(
2001
).
13.
L.
Page
,
S.
Brin
,
R.
Motwani
, and
T.
Winograd
, “
The pagerank citation ranking: Bringing order to the web
,” (
1999
); available at http://ilpubs.stanford.edu:8090/422/.
14.
L.
,
Y.-C.
Zhang
,
C. H.
Yeung
, and
T.
Zhou
, “
Leaders in social networks, the delicious case
,”
PLoS One
6
,
e21202
(
2011
).
15.
T.
Bian
,
H.
Zheng
,
L.
Yin
, and
Y.
Deng
, “
Failure mode and effects analysis based on D numbers and TOPSIS
,”
Qual. Reliab. Eng. Int.
QRE2268
(
2018
).
16.
D.-B.
Chen
,
R.
Xiao
,
A.
Zeng
, and
Y.-C.
Zhang
, “
Path diversity improves the identification of influential spreaders
,”
Europhys. Lett.
104
,
68006
(
2014
).
17.
F.
Hu
and
Y.
Liu
, “
Multi-index algorithm of identifying important nodes in complex networks based on linear discriminant analysis
,”
Mod. Phys. Lett. B
29
,
1450268
(
2015
).
18.
Q.
Zhang
,
M.
Li
, and
Y.
Deng
, “
Measure the structure similarity of nodes in complex networks based on relative entropy
,”
Physica A
491
,
749
763
(
2018
).
19.
X.
Zhou
,
Y.
Hu
,
Y.
Deng
,
F. T. S.
Chan
, and
A.
Ishizaka
, “
A DEMATEL-based completion method for incomplete pairwise comparison matrix in AHP
,”
Ann. Oper. Res.
(
2018
).
20.
H.
Yu
,
L.
Chen
,
X.
Cao
,
Z.
Liu
, and
Y.
Li
, “
Identifying top-k important nodes based on probabilistic-jumping random walk in complex networks
,” in
International Workshop on Complex Networks and Their Applications
(
Springer
,
2017
), pp.
326
338
.
21.
G.
Csányi
and
B.
Szendrői
, “
Structure of a large social network
,”
Phys. Rev. E
69
,
036131
(
2004
).
22.
S.
Havlin
,
D.
ben Avraham
 et al, “
Fractal and transfractal recursive scale-free nets
,”
New J. Phys.
9
,
175
(
2007
).
23.
B.
Kang
,
G.
Chhipi-Shrestha
,
Y.
Deng
,
K.
Hewage
, and
R.
Sadiq
, “
Stable strategies analysis based on the utility of Z-number in the evolutionary games
,”
Appl. Math. Comput.
324
,
202
217
(
2018
).
24.
Z.
Zhang
,
S.
Zhou
,
T.
Zou
, and
G.
Chen
, “
Fractal scale-free networks resistant to disease spread
,”
J. Stat. Mech.: Theory Exp.
2008
,
P09008
.
25.
X.
Deng
and
Y.
Deng
, “
D-AHP method with different credibility of information
,”
Soft Comput.
1
9
(
2018
).
26.
C.
Song
,
S.
Havlin
, and
H. A.
Makse
, “
Self-similarity of complex networks
,”
Nature
433
,
392
395
(
2005
).
27.
C.
Song
,
L. K.
Gallos
,
S.
Havlin
, and
H. A.
Makse
, “
How to calculate the fractal dimension of a complex network: The box covering algorithm
,”
J. Stat. Mech.: Theory Exp.
2007
,
P03006
.
28.
S. N.
Dorogovtsev
and
J. F. F.
Mendes
, “
Evolution of networks with aging of sites
,”
Phys. Rev. E
62
,
1842
(
2000
).
29.
Z.-Z.
Zhang
,
S.-G.
Zhou
, and
T.
Zou
, “
Self-similarity, small-world, scale-free scaling, disassortativity, and robustness in hierarchical lattices
,”
Eur. Phys. J. B
56
,
259
271
(
2007
).
30.
R.
Zhang
,
B.
Ashuri
, and
Y.
Deng
, “
A novel method for forecasting time series based on fuzzy logic and visibility graph
,”
Adv. Data Anal. Classif.
11
,
759
783
(
2017
).
31.
W.
Deng
,
X.
Lu
, and
Y.
Deng
, “
Evidential model validation under epistemic uncertainty
,”
Math. Probl. Eng.
(
2018
).
32.
J.
Kim
,
K.-I.
Goh
,
B.
Kahng
, and
D.
Kim
, “
Fractality and self-similarity in scale-free networks
,”
New J. Phys.
9
,
177
(
2007
).
33.
L.
Yin
and
Y.
Deng
, “
Measuring transferring similarity via local information
,”
Physica A
498
,
102
115
(
2018
).
34.
F. N.
Silva
and
L. d. F.
Costa
, “
Local dimension of complex networks
,” preprint arXiv:1209.2476 (
2012
).
35.
J.
Pu
,
X.
Chen
,
D.
Wei
,
Q.
Liu
, and
Y.
Deng
, “
Identifying influential nodes based on local dimension
,”
Europhys. Lett.
107
,
10010
(
2014
).
36.
S.
Auer
,
C.
Bizer
,
G.
Kobilarov
,
J.
Lehmann
,
R.
Cyganiak
, and
Z.
Ives
, “
Dbpedia: A nucleus for a web of open data
,” in
The Semantic Web
(
2007
), pp.
722
735
.
37.
Y.
Du
,
C.
Gao
,
Y.
Hu
,
S.
Mahadevan
, and
Y.
Deng
, “
A new method of identifying influential nodes in complex networks based on TOPSIS
,”
Physica A
399
,
57
69
(
2014
).
38.
U.
Sehgal
,
K.
Kaur
, and
P.
Kumar
, “
The anatomy of a large-scale hyper textual web search engine
,” in
2009 Second International Conference on Computer and Electrical Engineering
(
IEEE
,
2009
), pp.
491
495
.
39.
S.
Brin
and
L.
Page
, “
Reprint of: The anatomy of a large-scale hypertextual web search engine
,”
Comput. Networks
56
,
3825
3833
(
2012
).
40.
A. N.
Langville
and
C. D.
Meyer
,
Google's PageRank and beyond: The Science of Search Engine Rankings
(
Princeton University Press
,
2011
).
41.
L.
,
D.
Chen
,
X.-L.
Ren
,
Q.-M.
Zhang
,
Y.-C.
Zhang
, and
T.
Zhou
, “
Vital nodes identification in complex networks
,”
Phys. Rep.
650
,
1
63
(
2016
).
42.
D. P.
Dailey
, “
Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete
,”
Discrete Math.
30
,
289
293
(
1980
).
43.
R.
Lambiotte
,
V. D.
Blondel
,
C.
De Kerchove
,
E.
Huens
,
C.
Prieur
,
Z.
Smoreda
, and
P.
Van Dooren
, “
Geographical dispersal of mobile communication networks
,”
Physica A
387
,
5317
5325
(
2008
).
44.
L.
Daqing
,
K.
Kosmidis
,
A.
Bunde
, and
S.
Havlin
, “
Dimension of spatially embedded networks
,”
Nat. Phys.
7
,
481
484
(
2011
).
45.
E.
Ben-Naim
,
H.
Frauenfelder
, and
Z.
Toroczkai
,
Complex Networks
(
Springer Science & Business Media
,
2004
), Vol.
650
.
46.
C. E.
Shannon
, “
A mathematical theory of communication
,”
ACM SIGMOBILE Mobile Comput. Commun. Rev.
5
,
3
55
(
2001
).
47.
M. E.
Newman
and
M.
Girvan
, “
Finding and evaluating community structure in networks
,”
Phys. Rev. E
69
,
026113
(
2004
).
48.
M. E.
Newman
, “
Finding community structure in networks using the eigenvectors of matrices
,”
Phys. Rev. E
74
,
036104
(
2006
).
49.
H.
Xu
and
Y.
Deng
, “
Dependent evidence combination based on Shearman coefficient and Pearson coefficient
,”
IEEE Access
6
,
11634
11640
(
2018
).
You do not currently have access to this content.