A data-driven linear framework for detecting, anticipating, and predicting incipient bifurcations in spatially extended systems based on principal oscillation pattern (POP) analysis is discussed. The dynamics are assumed to be governed by a system of linear stochastic differential equations which is estimated from the data. The principal modes of the system together with corresponding decay or growth rates and oscillation frequencies are extracted as the eigenvectors and eigenvalues of the system matrix. The method can be applied to stationary datasets to identify the least stable modes and assess the proximity to instability; it can also be applied to nonstationary datasets using a sliding window approach to track the changing eigenvalues and eigenvectors of the system. As a further step, a genuinely nonstationary POP analysis is introduced. Here, the system matrix of the linear stochastic model is time-dependent, allowing for extrapolation and prediction of instabilities beyond the learning data window. The methods are demonstrated and explored using the one-dimensional Swift-Hohenberg equation as an example, focusing on the dynamics of stochastic fluctuations around the homogeneous stable state prior to the first bifurcation. The POP-based techniques are able to extract and track the least stable eigenvalues and eigenvectors of the system; the nonstationary POP analysis successfully predicts the timing of the first instability and the unstable mode well beyond the learning data window.

1.
C.
Kuehn
,
Physica D
240
,
1020
(
2011
).
2.
H.
Held
and
T.
Kleinen
,
Geophys. Res. Lett.
31
,
L23207
, (
2004
).
3.
V.
Dakos
,
M.
Scheffer
,
E. H.
van Nes
,
V.
Brovkin
,
V.
Petoukhov
, and
H.
Held
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
14308
(
2008
).
4.
S. R.
Carpenter
and
W. A.
Brock
,
Ecol. Lett.
9
,
311
(
2006
).
5.
M.
Scheffer
,
J.
Bascompte
,
W. A.
Brock
,
V.
Brovkin
,
S. R.
Carpenter
,
V.
Dakos
,
H.
Held
,
E. H.
van Nes
,
M.
Rietkerk
, and
G.
Sugihara
,
Nature
461
,
53
(
2009
).
6.
V.
Guttal
and
C.
Jayaprakash
,
Ecol. Lett.
11
,
450
(
2008
).
7.
V. N.
Livina
,
F.
Kwasniok
, and
T. M.
Lenton
,
Clim. Past
6
,
77
(
2010
).
8.
V. N.
Livina
,
F.
Kwasniok
,
G.
Lohmann
,
J. W.
Kantelhardt
, and
T. M.
Lenton
,
Clim. Dyn.
37
,
2437
(
2011
).
9.
J. M. T.
Thompson
and
J.
Sieber
,
IMA J. Appl. Math.
76
,
27
(
2011
).
10.
W.-X.
Wang
,
R.
Yang
,
Y.-C.
Lai
,
V.
Kovanis
, and
C.
Grebogi
,
Phys. Rev. Lett.
106
,
154101
(
2011
).
11.
C. L. E.
Franzke
,
Physica D
262
,
35
(
2013
).
12.
F.
Kwasniok
,
Phys. Rev. E
88
,
052917
(
2013
).
13.
F.
Kwasniok
,
Phys. Rev. E
92
,
062928
(
2015
).
14.
M. S.
Williamson
and
T. M.
Lenton
,
Chaos
25
,
036407
(
2015
).
15.
V.
Dakos
,
S.
Kefi
,
M.
Rietkerk
,
E. H.
van Nes
, and
M.
Scheffer
,
Am. Nat.
177
,
E153
(
2011
).
16.
V.
Dakos
,
E. H.
van Nes
,
R.
Donangelo
,
H.
Fort
, and
M.
Scheffer
,
Theor. Ecol.
3
,
163
(
2010
).
17.
R.
Donangelo
,
H.
Fort
,
V.
Dakos
,
M.
Scheffer
, and
E. H.
van Nes
,
Int. J. Bifurcation Chaos
20
,
315
(
2010
).
18.
V.
Guttal
and
C.
Jayaprakash
,
Theor. Ecol.
2
,
3
(
2009
).
19.
S.
Kéfi
,
M.
Rietkerk
,
C. L.
Alados
,
Y.
Peyo
 et al.,
Nature
449
,
213
(
2007
).
20.
K.
Gowda
and
C.
Kuehn
,
Commun. Nonlinear Sci. Numer. Simul.
22
,
55
(
2015
).
21.
K.
Hasselmann
,
J. Geophys. Res.
93
,
11015
, (
1988
).
22.
H.
von Storch
,
G.
Burger
,
R.
Schnur
, and
J.-S.
Von Storch
,
J. Clim.
8
,
377
(
1995
).
23.
P. J.
Schmid
,
J. Fluid Mech.
656
,
5
(
2010
).
24.
I. T.
Jolliffe
,
Principal Component Analysis
(
Springer
,
2010
).
25.
J.
Swift
and
P. C.
Hohenberg
,
Phys. Rev. A
15
,
319
(
1977
).
26.
M. C.
Cross
and
P. C.
Hohenberg
,
Rev. Mod. Phys.
65
,
851
(
1993
).
27.
J.
Burke
,
S. M.
Houghton
, and
E.
Knobloch
,
Phys. Rev. E
80
,
036202
(
2009
).
28.
P. E.
Kloeden
and
E.
Platen
,
Numerical Solution of Stochastic Differential Equations
(
Springer
,
2010
).
29.
J.
Garcia-Ojalvo
and
J.
Sancho
,
Noise in Spatially Extended Systems
(
Springer
,
1999
).
You do not currently have access to this content.