Our aim is to unfold phase space structures underlying systems with a drift in their parameters. Such systems are non-autonomous and belong to the class of non-periodically driven systems where the traditional theory of chaos (based e.g., on periodic orbits) does not hold. We demonstrate that even such systems possess an underlying topological horseshoe-like structure at least for a finite period of time. This result is based on a specifically developed method which allows to compute the corresponding time-dependent stable and unstable foliations. These structures can be made visible by prescribing a certain type of history for an ensemble of trajectories in phase space and by analyzing the trajectories fulfilling this constraint. The process can be considered as a leaking in history space—a generalization of traditional leaking, a method that has become widespread in traditional chaotic systems, to leaks depending on time.

1.
F. J.
Romeiras
,
C.
Grebogi
, and
E.
Ott
,
Phys. Rev. A
41
,
784
(
1990
).
2.
H.
Crauel
,
A.
Debussche
, and
F.
Flandoli
,
J Dyn. Differ. Eq.
9
,
307
(
1997
).
3.
L.
Arnold
,
Random Dynamical Systems
(
Springer
,
New York
,
1998
).
4.
M.
Ghil
,
M. D.
Chekroun
, and
E.
Simonnet
,
Physica D
237
,
2111
(
2008
).
5.
M. D.
Chekroun
,
E.
Simonnet
, and
M.
Ghil
,
Physica D
240
,
1685
(
2011
).
6.
P.
Kloeden
and
M.
Rasmussen
,
Nonautonomous Dynamical Systems
, Mathematical Surveys and Monographs Vol.
176
(
American Mathematical Society
,
2011
).
7.
T.
Bódai
and
T.
Tél
,
Chaos
22
,
023110
(
2012
).
8.
G.
Drótos
,
T.
Bódai
, and
T.
Tél
,
J. Clim.
28
,
3275
(
2015
).
9.
A. N.
Carvalho
,
J. A.
Langa
, and
J. C.
Robinson
,
Attractors for Infinite-Dimensional Nonautonomous Dynamical Systems
, Applied Mathematical Sciences Vol.
182
(
Springer
,
New York
,
2013
).
10.
T.
Nishikawa
and
E.
Ott
,
Chaos
24
,
033107
(
2014
).
11.
L.
Yu
,
E.
Ott
, and
Q.
Chen
,
Phys. Rev. Lett.
65
,
2935
(
1990
);
[PubMed]
L.
Yu
,
E.
Ott
, and
Q.
Chen
,
Physica D
53
,
102
(
1991
).
12.
J. C.
Sommerer
and
E.
Ott
,
Science
259
,
335
(
1993
).
13.
Y.-C.
Lai
,
U.
Feudel
, and
C.
Grebogi
,
Phys. Rev. E
54
,
6070
(
1996
).
14.
J.
Jacobs
,
E.
Ott
,
T.
Antonsen
, and
J.
Yorke
,
Physica D
110
,
1
(
1997
).
15.
Z.
Neufeld
and
T.
Tél
,
Phys. Rev. E
57
,
2832
(
1998
).
16.
J. L.
Hansen
and
T.
Bohr
,
Physica D
118
,
40
(
1998
).
17.
G.
Károlyi
,
T.
Tél
,
A. P. S.
de Moura
, and
C.
Grebogi
,
Phys. Rev. Lett.
92
,
174101
(
2004
).
18.
R.
Serquina
,
Y.-C.
Lai
, and
Q.
Chen
,
Phys. Rev. E
77
,
026208
(
2008
).
19.
T.
Bódai
,
G.
Károlyi
, and
T.
Tél
,
Phys. Rev. E
83
,
046201
(
2011
).
20.
A.
Hadjighasem
,
M.
Farazmand
, and
G.
Haller
,
Nonlinear Dyn.
73
,
689
(
2013
).
21.
A.
Pikovsky
, in
Nonlinear and Turbulent Processes in Physics
, edited by
R. Z.
Sagdeev
(
Harwood Academic Publishers
,
Reading
,
1984
), Vol.
3
;
A.
Pikovsky
,
Radiophys. Quantum Electron.
27
,
576
(
1984
).
22.
J. D.
Daron
and
D. A.
Stainforth
,
Environ. Res. Lett.
8
,
034021
(
2013
);
J. D.
Daron
and
D. A.
Stainforth
,
Chaos
25
,
043103
(
2015
).
[PubMed]
23.
W. L.
Ku
,
M.
Girvan
, and
E.
Ott
,
Chaos
25
,
123122
(
2015
).
24.
M.
Herein
,
J.
Márfy
,
G.
Drótos
, and
T.
Tél
,
J. Clim.
29
,
259
(
2016
).
25.
S.
Pierini
,
M.
Ghil
, and
M.
Chekroun
,
J. Clim.
29
,
4185
(
2016
).
26.
M.
Herein
,
G.
Drótos
,
T.
Haszpra
,
J.
Márfy
, and
T.
Tél
,
Sci. Rep.
7
,
44529
(
2017
).
27.
M.
Herein
,
G.
Drótos
,
T.
Bódai
,
F.
Lunkeit
, and
V.
Lucarini
, “
Reconsidering the relationship of the El Niño–Southern Oscillation and the Indian monsoon using ensembles instate-of-the-art Earth system models
,” preprint (
2018
).
28.
M.
Vincze
, “
Modeling climate change in the laboratory
,” in
Teaching Physics Innovatively
, edited by
A.
Király
and
T.
Tél
(
Ph.D. School of Physics, Eötvös University
,
Budapest
,
2016
), pp.
107
118
.
29.
M.
Vincze
,
I.
Borcia
, and
U.
Harlander
,
Sci. Rep.
7
,
254
(
2017
).
30.
B.
Kaszás
,
U.
Feudel
, and
T.
Tél
,
Phys. Rev. E
94
,
062221
(
2016
).
31.
P.
Ashwin
,
S.
Wieczorek
,
R.
Vitolo
, and
P.
Cox
,
Philos. Trans. R. Soc. London, Ser. A
370
,
1166
(
2012
).
32.
P.
Ashwin
,
C.
Perryman
, and
S.
Wieczorek
,
Nonlinearity
30
,
2185
2210
(
2017
).
33.
S.
Wieczorek
,
P.
Ashwin
,
C. M.
Luke
, and
P. M.
Cox
,
Proc. R. Soc. A
467
,
1243
(
2011
).
34.
E. G.
Altmann
,
J. S. E.
Portela
, and
T.
Tél
,
Rev. Mod. Phys.
85
,
869
918
(
2013
).
35.
F.
Hellmann
,
P.
Schultz
,
C.
Grabow
,
J.
Heitzig
, and
J.
Kurths
,
Sci. Rep.
6
,
29654
(
2016
).
36.
T.
Tél
and
M.
Gruiz
,
Chaotic Dynamics
(
Cambridge University Press
,
Cambridge
,
2006
).
37.
Y.-C.
Lai
and
T.
Tél
,
Transient Chaos
(
Springer
,
New York
,
2011
).
38.
In the following animation, the time evolution of an ensemble of trajectories is shown (black points with an initially uniform distribution) for dynamics (1) and (2) with α = 0.025. The blue and red points indicate those trajectories at time t within the ensemble that do not change their sign of ω over the time interval (0T; 4T].
39.
A.
Csordás
and
P.
Szépfalusy
,
Phys. Rev. A
39
,
4767
4777
(
1989
).
40.
J. D.
Farmer
,
Z. Naturforsch. A
37
,
1304
1325
(
1982
).
41.
These basins might be empty, if, e.g., the constraints contradict basic features of the dynamics.
42.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
1993
).
43.

Note that this only holds for the stable foliation and for dynamics started at the same time. The unstable foliation is strongly time-dependent (see Sec. VI).

44.
To unfold the unstable foliation, one should consider time windows which end at the same time.
45.
G. W.
Yohe
,
Global Environ. Change
7
,
303
315
(
1997
).
46.
G.
Petschel-Held
,
H.-J.
Schellnhuber
,
T.
Bruckner
,
F. L.
Tóth
, and
K.
Hasselmann
,
Clim. Change
41
,
303
331
(
1999
).

Supplementary Material

You do not currently have access to this content.