Finding the correct encoding for a generic dynamical system's trajectory is a complicated task: the symbolic sequence needs to preserve the invariant properties from the system's trajectory. In theory, the solution to this problem is found when a Generating Markov Partition (GMP) is obtained, which is only defined once the unstable and stable manifolds are known with infinite precision and for all times. However, these manifolds usually form highly convoluted Euclidean sets, are a priori unknown, and, as it happens in any real-world experiment, measurements are made with finite resolution and over a finite time-span. The task gets even more complicated if the system is a network composed of interacting dynamical units, namely, a high-dimensional complex system. Here, we tackle this task and solve it by defining a method to approximately construct GMPs for any complex system's finite-resolution and finite-time trajectory. We critically test our method on networks of coupled maps, encoding their trajectories into symbolic sequences. We show that these sequences are optimal because they minimise the information loss and also any spurious information added. Consequently, our method allows us to approximately calculate the invariant probability measures of complex systems from the observed data. Thus, we can efficiently define complexity measures that are applicable to a wide range of complex phenomena, such as the characterisation of brain activity from electroencephalogram signals measured at different brain regions or the characterisation of climate variability from temperature anomalies measured at different Earth regions.

1.
J. P.
Eckman
and
D.
Ruelle
, “
Ergodic theory of chaos and strange attractors
,”
Rev. Mod. Phys.
57
(
3
),
617
656
(
1985
).
2.
S.
Wiggins
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
(
Springer Science & Business Media
,
2003
).
3.
K. T.
Alligood
,
T. D.
Sauer
, and
J. A.
Yorke
,
Chaos: An Introduction to Dynamical Systems
, 3rd ed. (
Springer Science & Business Media
,
2006
).
4.
J.
Guckenheimer
and
P. J.
Holmes
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(
Springer Science & Business Media
,
2013
), Vol.
42
.
5.
C. E.
Shannon
, “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
623
656
(
1948
).
6.
A. N.
Kolmogorov
, “
A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces
,”
Dokl. Akad. Nauk SSSR
119
,
861
864
(
1958
).
7.
J. M.
Amigó
,
Permutation Complexity in Dynamical Systems-Ordinal Patterns, Permutation Entropy, and All That
, 1st ed. (
Springer Science & Business Media
,
2010
).
8.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Crises, sudden changes in chaotic attractors, and transient chaos
,”
Physica D
7
,
181
200
(
1983
).
9.
S. W.
McDonald
,
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Fractal basin boundaries
,”
Physica D
17
,
125
153
(
1985
).
10.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics
,”
Science
238
(
4827
),
632
638
(
1987
).
11.
P.
Cvitanović
,
G. H.
Gunaratne
, and
I.
Procaccia
, “
Topological and metric properties of Hénon-type strange attractors
,”
Phys. Rev. A
38
(
3
),
1503
1520
(
1988
).
12.
A. S.
Pikovsky
and
U.
Feudel
, “
Characterizing strange nonchaotic attractors
,”
Chaos
5
(
1
),
253
260
(
1995
).
13.
U.
Feudel
and
C.
Grebogi
, “
Multistability and the control of complexity
,”
Chaos
7
(
4
),
597
604
(
1997
).
14.
Y. G.
Sinaî
, “
Construction of Markov partitionings
,”
Funktsionalnyi Anal. Prilozhenija
2
(
3
),
70
80
(
1968
).
15.
P.
Grassberger
and
H.
Kantz
, “
Generating partitions for the dissipative Hénon map
,”
Phys. Lett. A
113
(
5
),
235
238
(
1985
).
16.
F.
Christiansen
and
A.
Politi
, “
A generating partition for the standard map
,”
Phys. Rev. E
51
,
R3811
(
1995
).
17.
R. L.
Davidchack
,
Y.-C.
Lai
,
E. M.
Bollt
, and
M.
Dhamala
, “
Estimating generating partitions of chaotic systems by unstable periodic orbits
,”
Phys. Rev. E
61
(
2
),
1353
1356
(
2000
).
18.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Unstable periodic orbits and the dimensions of multifractal chaotic attractors
,”
Phys. Rev. A
37
,
1711
1724
(
1988
).
19.
Y.
Hirata
,
K.
Judd
, and
D.
Kilminster
, “
Estimating a generating partition from observed time series: Symbolic shadowing
,”
Phys. Rev. E
70
,
016215
(
2004
).
20.
D.
Holstein
and
H.
Kantz
, “
Optimal Markov approximations and generalized embeddings
,”
Phys. Rev. E
79
,
056202
(
2009
).
21.
H.
Teramoto
and
T.
Komatsuzaki
, “
How does a choice of Markov partition affect the resultant symbolic dynamics?
,”
Chaos
20
,
037113
(
2010
).
22.
E. M.
Bollt
,
T.
Stanford
,
Y.-C.
Lai
, and
K.
Źyczkowski
, “
Validity of threshold-crossing analysis of symbolic dynamics from chaotic time series
,”
Phys. Rev. Lett.
85
(
16
),
3524
3527
(
2000
).
23.
C.
Bandt
and
B.
Pompe
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
(
17
),
174102
(
2002
).
24.
N.
Rubido
 et al, “
Language organization and temporal correlations in the spiking activity of an excitable laser: Experiments and model comparison
,”
Phys. Rev. E
84
(
2
),
026202
(
2011
).
25.
J. M.
Amigó
,
R.
Monetti
,
T.
Aschenbrenner
, and
W.
Bunk
, “
Transcripts: An algebraic approach to coupled time series
,”
Chaos
22
,
013105
(
2012
).
26.
E.
Bianco-Martínez
,
N.
Rubido
,
C. G.
Antonopoulos
, and
M. S.
Baptista
, “
Successful network inference from time-series data using mutual information rate
,”
Chaos
26
,
043102
(
2016
).
27.
M. S.
Baptista
,
C.
Grebogi
, and
R.
Köberle
, “
Dynamically multilayered visual system of the multifractal fly
,”
Phys. Rev. Lett.
97
,
178102
(
2006
).
28.
M. S.
Baptista
and
J.
Kurths
, “
Transmission of information in active networks
,”
Phys. Rev. E
77
,
026205
(
2008
).
29.
M. B.
Kennel
and
M.
Buhl
, “
Estimating good discrete partitions from observed data: Symbolic false nearest neighbors
,”
Phys. Rev. Lett.
91
(
8
),
084102
(
2003
).
30.
K.
Kaneko
, “
Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements
,”
Physica D
41
,
137
172
(
1990
).
31.
F.
Xie
and
H.
Cerdeira
, “
Coherent-ordered transition in chaotic globally coupled maps
,”
Phys. Rev. E
54
(
4
),
3235
3238
(
1996
).
32.
E. S.
Medeiros
,
I. L.
Caldas
,
M. S.
Baptista
, and
U.
Feudel
, “
Trapping phenomenon attenuates tipping points for limit cycles
,”
Sci. Rep.
7
,
42351
(
2017
).
You do not currently have access to this content.