Using a system of two FitzHugh-Nagumo units, we demonstrate the occurrence of riddled basins of attraction in delay-coupled systems as the coupling between the units is increased. We characterize riddled basins using the uncertainty exponent which is a measure of the dimensions of the basin boundary. Additionally, we show that the phase space can be partitioned into pure and mixed regions, where initial conditions in the pure regions certainly avoid the generation of extreme events, while initial conditions in the mixed region may or may not exhibit such events. This implies that any tiny perturbation of initial conditions in the mixed region could yield the emergence of extreme events because the latter state possesses a riddled basin of attraction.

1.
G.
Ansmann
,
R.
Karnatak
,
K.
Lehnertz
, and
U.
Feudel
, “
Extreme events in excitable systems and mechanisms of their generation
,”
Phys. Rev. E
88
,
052911
(
2013
).
2.
R.
Karnatak
,
G.
Ansmann
,
U.
Feudel
, and
K.
Lehnertz
, “
Route to extreme events in excitable systems
,”
Phys. Rev. E
90
,
022917
(
2014
).
3.
D.
Helbing
, “
Traffic and related self-driven many-particle systems
,”
Rev. Mod. Phys.
73
,
1067
1141
(
2001
).
4.
J.
Feigenbaum
, “
A statistical analysis of log-periodic precursors to financial crashes
,”
Quant. Finance
1
,
346
360
(
2001
).
5.
I.
Dobson
,
B. A.
Carreras
,
V. E.
Lynch
, and
D. E.
Newman
, “
Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization
,”
Chaos
17
,
026103
(
2007
).
6.
A.
Bunde
,
J.
Kropp
, and
H.
Schellnhuber
,
The Science of Disasters: Climate Disruptions, Heart Attacks, and Market Crashes
, Physics and Astronomy Online Library (
Springer
,
Berlin, Heidelberg
,
2002
).
7.
N.
Akhmediev
,
A.
Ankiewicz
, and
M.
Taki
, “
Waves that appear from nowhere and disappear without a trace
,”
Phys. Lett. A
373
,
675
678
(
2009
).
8.
A.
Chabchoub
,
N. P.
Hoffmann
, and
N.
Akhmediev
, “
Rogue wave observation in a water wave tank
,”
Phys. Rev. Lett.
106
,
204502
(
2011
).
9.
A.
Chabchoub
,
N.
Hoffmann
,
M.
Onorato
, and
N.
Akhmediev
, “
Super rogue waves: Observation of a higher-order breather in water waves
,”
Phys. Rev. X
2
,
011015
(
2012
).
10.
C.
Bonatto
,
M.
Feyereisen
,
S.
Barland
,
M.
Giudici
,
C.
Masoller
,
J. R. R.
Leite
, and
J. R.
Tredicce
, “
Deterministic optical rogue waves
,”
Phys. Rev. Lett.
107
,
053901
(
2011
).
11.
N.
Akhmediev
 et al, “
Roadmap on optical rogue waves and extreme events
,”
J. Opt.
18
,
063001
(
2016
).
12.
A. N.
Pisarchik
,
R.
Jaimes-Reátegui
,
R.
Sevilla-Escoboza
,
G.
Huerta-Cuellar
, and
M.
Taki
, “
Rogue waves in a multistable system
,”
Phys. Rev. Lett.
107
,
274101
(
2011
).
13.
A. K. D.
Bosco
,
D.
Wolfersberger
, and
M.
Sciamanna
, “
Extreme events in time-delayed nonlinear optics
,”
Opt. Lett.
38
,
703
705
(
2013
).
14.
S.
Bialonski
,
G.
Ansmann
, and
H.
Kantz
, “
Data-driven prediction and prevention of extreme events in a spatially extended excitable system
,”
Phys. Rev. E
92
,
042910
(
2015
).
15.
S.
Bialonski
,
D. A.
Caron
,
J.
Schloen
,
U.
Feudel
,
H.
Kantz
, and
S. D.
Moorthi
, “
Phytoplankton dynamics in the southern California bight indicate a complex mixture of transport and biology
,”
J. Plankton Res.
38
,
1077
(
2016
).
16.
K.
Lehnertz
, “
Epilepsy and nonlinear dynamics
,”
J. Biol. Phys.
34
,
253
266
(
2008
).
17.
K.
Lehnertz
, “
Epilepsy: Extreme events in the human brain
,” in
Extreme Events in Nature and Society
, edited by
S.
Albeverio
,
V.
Jentsch
, and
H.
Kantz
(
Springer
,
Berlin, Heidelberg
,
2006
), pp.
123
143
.
18.
J.-W.
Kim
and
E.
Ott
, “
Statistics and characteristics of spatiotemporally rare intense events in complex Ginzburg-Landau models
,”
Phys. Rev. E
67
,
026203
(
2003
).
19.
J. A.
Reinoso
,
J.
Zamora-Munt
, and
C.
Masoller
, “
Extreme intensity pulses in a semiconductor laser with a short external cavity
,”
Phys. Rev. E
87
,
062913
(
2013
).
20.
J.
Zamora-Munt
,
B.
Garbin
,
S.
Barland
,
M.
Giudici
,
J. R. R.
Leite
,
C.
Masoller
, and
J. R.
Tredicce
, “
Rogue waves in optically injected lasers: Origin, predictability, and suppression
,”
Phys. Rev. A
87
,
035802
(
2013
).
21.
A.
Rothkegel
and
K.
Lehnertz
, “
Irregular macroscopic dynamics due to chimera states in small-world networks of pulse-coupled oscillators
,”
New J. Phys.
16
,
055006
(
2014
).
22.
A.
Saha
and
U.
Feudel
, “
Extreme events in FitzHugh-Nagumo oscillators coupled with two time delays
,”
Phys. Rev. E
95
,
062219
(
2017
).
23.
J.
Vandermeer
,
L.
Stone
, and
B.
Blasius
, “
Categories of chaos and fractal basin boundaries in forced predatorprey models
,”
Chaos, Solitons Fractals
12
,
265
276
(
2001
).
24.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics
,” in
Nonlinear Physics for Beginners
(
World Scientific
,
2012
), pp.
92
146
.
25.
S. W.
McDonald
,
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Fractal basin boundaries
,”
Physica D
17
,
125
153
(
1985
).
26.
H. E.
Nusse
and
J. A.
Yorke
, “
Wada basin boundaries and basin cells
,”
Physica D
90
,
242
261
(
1996
).
27.
L.
Poon
,
J.
Campos
,
E.
Ott
, and
C.
Grebogi
, “
Wada basin boundaries in chaotic scattering
,”
Int. J. Bifurcation Chaos
06
,
251
265
(
1996
).
28.
J. C.
Sommerer
and
E.
Ott
, “
Intermingled basins of attraction: Uncomputability in a simple physical system
,”
Phys. Lett. A
214
,
243
251
(
1996
).
29.
M.
Ding
and
W.
Yang
, “
Observation of intermingled basins in coupled oscillators exhibiting synchronized chaos
,”
Phys. Rev. E
54
,
2489
2494
(
1996
).
30.
Y.-C.
Lai
and
C.
Grebogi
, “
Intermingled basins and two-state on-off intermittency
,”
Phys. Rev. E
52
,
R3313
R3316
(
1995
).
31.
J.
Alexander
,
J. A.
Yorke
,
Z.
You
, and
I.
Kan
, “
Riddled basins
,”
Int. J. Bifurcation Chaos
02
,
795
813
(
1992
).
32.
J. F.
Heagy
,
T. L.
Carroll
, and
L. M.
Pecora
, “
Experimental and numerical evidence for riddled basins in coupled chaotic systems
,”
Phys. Rev. Lett.
73
,
3528
3531
(
1994
).
33.
E.
Ott
,
J.
Alexander
,
I.
Kan
,
J.
Sommerer
, and
J.
Yorke
, “
The transition to chaotic attractors with riddled basins
,”
Physica D
76
,
384
410
(
1994
).
34.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Fractal basin boundaries, long-lived chaotic transients, and unstable-unstable pair bifurcation
,”
Phys. Rev. Lett.
50
,
935
938
(
1983
).
35.
J.
Kennedy
and
J. A.
Yorke
, “
Basins of Wada
,”
Physica D
51
,
213
225
(
1991
).
36.
E.
Ott
and
J. C.
Sommerer
, “
Blowout bifurcations: The occurrence of riddled basins and on-off intermittency
,”
Phys. Lett. A
188
,
39
47
(
1994
).
37.
E.
Ott
,
J. C.
Sommerer
,
J. C.
Alexander
,
I.
Kan
, and
J. A.
Yorke
, “
Scaling behavior of chaotic systems with riddled basins
,”
Phys. Rev. Lett.
71
,
4134
4137
(
1993
).
38.
P.
Ashwin
,
J.
Buescu
, and
I.
Stewart
, “
Bubbling of attractors and synchronisation of chaotic oscillators
,”
Phys. Lett. A
193
,
126
139
(
1994
).
39.
P.
Ashwin
,
J.
Buescu
, and
I.
Stewart
, “
From attractor to chaotic saddle: A tale of transverse instability
,”
Nonlinearity
9
,
703
(
1996
).
40.
B.
Cazelles
, “
Dynamics with riddled basins of attraction in models of interacting populations
,”
Chaos, Solitons Fractals
12
,
301
311
(
2001
).
41.
Y. L.
Maistrenko
,
V. L.
Maistrenko
,
A.
Popovich
, and
E.
Mosekilde
, “
Transverse instability and riddled basins in a system of two coupled logistic maps
,”
Phys. Rev. E
57
,
2713
2724
(
1998
).
42.
Y.
Maistrenko
,
T.
Kapitaniak
, and
P.
Szuminski
, “
Locally and globally riddled basins in two coupled piecewise-linear maps
,”
Phys. Rev. E
56
,
6393
6399
(
1997
).
43.
T.
Kapitaniak
, “
Experimental observation of riddled behaviour (electronic system)
,”
J. Phys. A: Math. Gen.
28
,
L63
(
1995
).
44.
S. R.
Ujjwal
,
N.
Punetha
,
R.
Ramaswamy
,
M.
Agrawal
, and
A.
Prasad
, “
Driving-induced multistability in coupled chaotic oscillators: Symmetries and riddled basins
,”
Chaos
26
,
063111
(
2016
).
45.
G.
Ansmann
, “
Efficiently and easily integrating differential equations with JiTCODE, JiTCDDE, and JiTCSDE
,” preprint arXiv:1711.09886 (
2017
).
46.
L.
Shampine
and
S.
Thompson
, “
Solving DDEs in Matlab
,”
Appl. Numer. Math.
37
,
441
458
(
2001
).
47.
C.
Grebogi
,
S. W.
McDonald
,
E.
Ott
, and
J. A.
Yorke
, “
Final state sensitivity: An obstruction to predictability
,”
Phys. Lett. A
99
,
415
418
(
1983
).
48.
J.
Milnor
, “
On the concept of attractor
,” in
The Theory of Chaotic Attractors
, edited by
B. R.
Hunt
,
T.-Y.
Li
,
J. A.
Kennedy
, and
H. E.
Nusse
(
Springer
,
New York, NY
,
2004
), pp.
243
264
.
49.
J.
Milnor
, “
On the concept of attractor: Correction and remarks
,”
Commun. Math. Phys.
102
,
517
519
(
1985
).
You do not currently have access to this content.